DEPDC5 and NPRL3 modulate cell size, filopodial outgrowth, and localization of mTOR in neural progenitor cells and neurons

Neurobiol Dis. 2018 Jun;114:184-193. doi: 10.1016/j.nbd.2018.02.013. Epub 2018 Feb 24.


Mutations in DEPDC5 and NPRL3 subunits of GATOR1, a modulator of mechanistic target of rapamycin (mTOR), are linked to malformations of cortical development (MCD). Brain specimens from these individuals reveal abnormal cortical lamination, altered cell morphology, and hyperphosphorylation of ribosomal S6 protein (PS6), a marker for mTOR activation. While numerous studies have examined GATOR1 subunit function in non-neuronal cell lines, few have directly assessed loss of GATOR1 subunit function in neuronal cell types. We hypothesized that DEPDC5 or NPRL3 shRNA-mediated knockdown (DEPDC5/NPRL3 KD) leads to inappropriate functional activation of mTOR and mTOR-dependent alterations in neuronal morphology. Neuronal size was determined in human specimens harboring DEPDC5 or NPRL3 mutations resected for epilepsy treatment. DEPDC5/NPRL3 KD effects on cell size, filopodial extension, subcellular mTOR complex 1 (mTORC1) localization, and mTORC1 activation during nutrient deprivation were assayed in mouse neuroblastoma cells (N2aC) and mouse subventricular zone derived neural progenitor cells (mNPCs). mTORC1-dependent effects of DEPDC5/NPRL3 KD were determined using the mTOR inhibitor rapamycin. Changes in mTOR subcellular localization and mTORC1 pathway activation following DEPDC5/NPRL3 KD were determined by examining the proximity of mTOR to the lysosomal surface during amino acid starvation. Neurons exhibiting PS6 immunoreactivity (Ser 235/236) in human specimens were 1.5× larger than neurons in post-mortem control samples. DEPDC5/NPRL3 KD caused mTORC1, but not mTORC2, hyperactivation, soma enlargement, and increased filopodia in N2aC and mNPCs compared with wildtype cells. DEPDC5/NPRL3 KD led to inappropriate mTOR localization at the lysosome along with constitutive mTOR activation following amino acid deprivation. DEPDC5/NPRL3 KD effects on morphology and functional mTOR activation were reversed by rapamycin. mTOR-dependent effects of DEPDC5/NPRL3 KD on morphology and subcellular localization of mTOR in neurons suggests that loss-of-function in GATOR1 subunits may play a role in MCD formation during fetal brain development.

Keywords: Brain development; Epilepsy; Focal cortical dysplasia; GATOR1; Neural progenitor cells; mTORopathy.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Line, Tumor
  • Cell Size*
  • GTPase-Activating Proteins / genetics
  • GTPase-Activating Proteins / metabolism*
  • HEK293 Cells
  • Humans
  • Mice
  • Neural Stem Cells / chemistry
  • Neural Stem Cells / physiology*
  • Neurons / chemistry
  • Neurons / physiology
  • Pseudopodia / genetics
  • Pseudopodia / metabolism*
  • Repressor Proteins / genetics
  • Repressor Proteins / metabolism*
  • TOR Serine-Threonine Kinases / genetics
  • TOR Serine-Threonine Kinases / metabolism*


  • DEPDC5 protein, human
  • GTPase-Activating Proteins
  • NPRL3 protein, human
  • Repressor Proteins
  • MTOR protein, human
  • TOR Serine-Threonine Kinases