Optical Properties of Complex Plasmonic Materials Studied with Extended Effective Medium Theories Combined with Rigorous Coupled Wave Analysis

Materials (Basel). 2018 Feb 27;11(3):351. doi: 10.3390/ma11030351.

Abstract

In this study we fabricate gold nanocomposites and model their optical properties. The nanocomposites are either homogeneous films or gratings containing gold nanoparticles embedded in a polymer matrix. The samples are fabricated using a recently developed technique making use of laser interferometry. The gratings present original plasmon-enhanced diffraction properties. In this work, we develop a new approach to model the optical properties of our composites. We combine the extended Maxwell-Garnett model of effective media with the Rigorous Coupled Wave Analysis (RCWA) method and compute both the absorption spectra and the diffraction efficiency spectra of the gratings. We show that such a semi-analytical approach allows us to reproduce the original plasmonic features of the composites and can provide us with details about their inner structure. Such an approach, considering reasonably high particle concentrations, could be a simple and efficient tool to study complex micro-structured system based on plasmonic components, such as metamaterials.

Keywords: Maxwell–Garnett theory; RCWA; diffraction; gold nanoparticles; gratings; laser interferometry; nanocomposites; plasmon.