Reverberation enhances onset dominance in sound localization

J Acoust Soc Am. 2018 Feb;143(2):786. doi: 10.1121/1.5023221.


Temporal variation in sensitivity to sound-localization cues was measured in anechoic conditions and in simulated reverberation using the temporal weighting function (TWF) paradigm [Stecker and Hafter (2002). J. Acoust. Soc. Am. 112, 1046-1057]. Listeners judged the locations of Gabor click trains (4 kHz center frequency, 5-ms interclick interval) presented from an array of loudspeakers spanning 360° azimuth. Targets ranged ±56.25° across trials. Individual clicks within each train varied by an additional ±11.25° to allow TWF calculation by multiple regression. In separate conditions, sounds were presented directly or in the presence of simulated reverberation: 13 orders of lateral reflection were computed for a 10 m × 10 m room ( RT60≊300 ms) and mapped to the appropriate locations in the loudspeaker array. Results reveal a marked increase in perceptual weight applied to the initial click in reverberation, along with a reduction in the impact of late-arriving sound. In a second experiment, target stimuli were preceded by trains of "conditioner" sounds with or without reverberation. Effects were modest and limited to the first few clicks in a train, suggesting that impacts of reverberant pre-exposure on localization may be limited to the processing of information from early reflections.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acoustic Stimulation
  • Cues*
  • Humans
  • Judgment
  • Motion
  • Sound Localization*
  • Sound*
  • Time Factors
  • Vibration