Behind the scenes: A medical natural language processing project

Int J Med Inform. 2018 Apr;112:68-73. doi: 10.1016/j.ijmedinf.2017.12.003. Epub 2017 Dec 9.

Abstract

Advancement of Artificial Intelligence (AI) capabilities in medicine can help address many pressing problems in healthcare. However, AI research endeavors in healthcare may not be clinically relevant, may have unrealistic expectations, or may not be explicit enough about their limitations. A diverse and well-functioning multidisciplinary team (MDT) can help identify appropriate and achievable AI research agendas in healthcare, and advance medical AI technologies by developing AI algorithms as well as addressing the shortage of appropriately labeled datasets for machine learning. In this paper, our team of engineers, clinicians and machine learning experts share their experience and lessons learned from their two-year-long collaboration on a natural language processing (NLP) research project. We highlight specific challenges encountered in cross-disciplinary teamwork, dataset creation for NLP research, and expectation setting for current medical AI technologies.

Keywords: Artificial intelligence in medicine; Cross-disciplinary research; Machine learning; Multidisciplinary teamwork; Natural language processing; Text analytics; Translational research.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms*
  • Artificial Intelligence*
  • Clinical Decision-Making*
  • Humans
  • Machine Learning*
  • Natural Language Processing*