Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2018 Mar:155:11-17.
doi: 10.1016/j.cmpb.2017.11.023. Epub 2017 Nov 28.

Methods for classifying depression in single channel EEG using linear and nonlinear signal analysis

Affiliations
Comparative Study

Methods for classifying depression in single channel EEG using linear and nonlinear signal analysis

Maie Bachmann et al. Comput Methods Programs Biomed. 2018 Mar.

Abstract

Background and objective: Depressive disorder is one of the leading causes of burden of disease today and it is presumed to take the first place in the world in 2030. Early detection of depression requires a patient-friendly inexpensive method based on easily measurable objective indicators. This study aims to compare various single-channel electroencephalographic (EEG) measures in application for detection of depression.

Methods: The EEG recordings were performed on a group of 13 medication-free depressive outpatients and 13 gender and age matched controls. The recorded 30-channel EEG signal was analysed using linear methods spectral asymmetry index, alpha power variability and relative gamma power and nonlinear methods Higuchi's fractal dimension, detrended fluctuation analysis and Lempel-Ziv complexity. Classification accuracy between depressive and control subjects was calculated using logistic regression analysis with leave-one-out cross-validation. Calculations were performed separately for each EEG channel.

Results: All calculated measures indicated increase with depression. Maximal testing accuracy using a single measure was 81% for linear and 77% for nonlinear measures. Combination of two linear measures provides the accuracy of 88% and two nonlinear measures of 85%. Maximal classification accuracy of 92% was indicated using mixed combination of three linear and three nonlinear measures.

Conclusions: The results of this preliminary study confirm that single-channel EEG analysis, employing the combination of measures, can provide discrimination of depression at the level of multichannel EEG analysis. The performed study shows that there is no single superior measure for detection of depression.

Keywords: Alpha power variability; Depression; EEG; Nonlinear signal processing; Relative gamma power; Spectral asymmetry index.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources