EBV transformation induces overexpression of hMSH2/3/6 on B lymphocytes and enhances γδT-cell-mediated cytotoxicity via TCR and NKG2D

Immunology. 2018 Mar 7;154(4):673-682. doi: 10.1111/imm.12920. Online ahead of print.

Abstract

The engagement of Epstein-Barr virus (EBV)-induced protein ligands in γδ T-cell-mediated anti-EBV immunity, especially in EBV-associated B-cell malignancies, has not been fully elucidated. Previously we reported the overexpression of human MutS homologue 2 (hMSH2), a stress-inducible protein ligand for human γδ T-cells, on EBV-transformed B lymphoblastic cell lines (B-LCLs). In this study, we first generated EBV-transformed B-LCLs from peripheral blood mononuclear cells of healthy volunteers with B95-8 cellular supernatant and cyclosporine A. Secondly, we demonstrated the significantly elevated cell surface protein expression and mRNA transcription of hMSH2 in EBV-transformed B-LCLs, 3D5 and EBV-positive B lymphoma cell line Daudi and Raji. Thirdly, hMSH2-mediated recognition of EBV-transformed B malignant cells by human γδ T-cells was confirmed by specific antibody blocking and siRNA interference. Both TCRγδ and NKG2D participated in hMSH2-mediated recognition of EBV-transformed B malignant cells. Furthermore, hMSH3 and hMSH6, the companion proteins of hMSH2, along with CD98, were found overexpressed on the surface of EBV-transformed malignant B-cells. We concluded that the induced overexpression of hMSH proteins might serve as early alerting biomarkers emerged in EBV-related B-cell malignances or as potential targets for establishing γδ T-cell-based therapeutic immunotherapies towards EBV infection.

Keywords: EBV; dual recognition; ectopic expression; human MutS homologue 2; γδ T-cells.