The c-Raf modulator RRD-251 enhances nuclear c-Raf/GSK-3/VDR axis signaling and augments 1,25-dihydroxyvitamin D3-induced differentiation of HL-60 myeloblastic leukemia cells

Oncotarget. 2018 Jan 19;9(11):9808-9824. doi: 10.18632/oncotarget.24275. eCollection 2018 Feb 9.

Abstract

Differentiation therapy is used in cancer treatment. Epidemiologic studies showed that higher vitamin D levels are associated with reduced cancer risks. However, the therapeutic doses needed for differentiation are accompanied by hypercalcemia and intolerable pathological sequelae. In the present work we evaluated if RRD-251, a small-molecule, can enhance vitamin D3-induced differentiation of leukemic cells, in the hope of decreasing the needed vitamin D3-dose. We demonstrate that RRD-251 enhances vitamin D3-induced differentiation of leukemic cells, the enrichment of the c-Raf kinase in the nucleus, the binding of nuclear c-Raf to GSK-3, increased phosphorylation of GSK-3 ser 21/9 inhibitory sites, and the binding of GSK-3 to VDR, where GSK-3 inhibition is known to enhance transcriptional activation by VDR. Enhancement of D3-induced p-GSK-3 ser 21/9 by RRD-251 was associated with enhanced Akt-GSK-3 binding, Akt being a known GSK-3 inhibitor, and diminished Erk1/2 binding. Diminishing Erk interaction with GSK-3 was associated with enhanced interaction with Vav1, a known driver of myeloid differentiation. This is redolent of an ATRA/c-Raf/GSK-3/RARα axis we previously reported, although the phosphorylation effects to enhance transcriptional activation on RARα vs VDR diverge. Taken together this indicates potential therapeutic significance for a c-Raf/GSK-3/VDR or RARα axis for leukemic myelo-monocytic differentiation.

Keywords: GSK-3; HL-60; MAPK; RRD-251; myeloid.