Protective effect of dihydromyricetin on LPS-induced acute lung injury

J Leukoc Biol. 2018 Mar 9. doi: 10.1002/JLB.3MA0317-101RRR. Online ahead of print.


Dihydromyricetin (DHM), a bioactive flavonoid component isolated from Ampelopsis grossedentata, is known to have anti-inflammatory effect, but the effect of DHM on acute lung injury (ALI) is largely unknown. Here, we investigated the effect of DHM on ALI and the underlying mechanism by bioinformatic analyses and animal experiments. We found that pretreatment with DHM ameliorated lung pathological changes and suppressed the inflammation response in lung tissues after LPS challenge. The potential targets of DHM were predicted by DDI-CPI and DRAR-CPI tools and analyzed using the STRING server to predict the functionally related signaling pathways, such as MAPK signaling. Molecular docking calculations indicated that DHM could be embedded tightly into the binding pocket of ERK, JNK, and p38. Furthermore, the activation of MAPK signaling induced by LPS was inhibited by DHM. In conclusion, these findings suggest that DHM may exert its protective effect on ALI by inhibiting MAPK signaling. The present study supports a potential clinical application for DHM in treating ALI and provides a novel design that combines in silico methods with in vivo experiments for drug research.

Keywords: MAPK; acute lung injury; bioinformatics; dihydromyricetin; inflammation; protective effect.