Intracranial Electrophysiology of the Human Default Network

Trends Cogn Sci. 2018 Apr;22(4):307-324. doi: 10.1016/j.tics.2018.02.002. Epub 2018 Mar 7.

Abstract

The human default network (DN) plays a critical role in internally directed cognition, behavior, and neuropsychiatric disease. Despite much progress with functional neuroimaging, persistent questions still linger concerning the electrophysiological underpinnings, fast temporal dynamics, and causal importance of the DN. Here, we review how direct intracranial recording and stimulation of the DN provides a unique combination of high spatiotemporal resolution and causal information that speaks directly to many of these outstanding questions. Our synthesis highlights the electrophysiological basis of activation, suppression, and connectivity of the DN, each key areas of debate in the literature. Integrating these unique electrophysiological data with extant neuroimaging findings will help lay the foundation for a mechanistic account of DN function in human behavior and cognition.

Keywords: ECoG; default network; electrocorticography; iEEG; intracranial electroencephalography.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Brain Waves / physiology*
  • Cerebral Cortex / physiology*
  • Electrocorticography / methods*
  • Functional Neuroimaging / methods*
  • Humans
  • Nerve Net / physiology*