UBD modifies APOL1-induced kidney disease risk

Proc Natl Acad Sci U S A. 2018 Mar 27;115(13):3446-3451. doi: 10.1073/pnas.1716113115. Epub 2018 Mar 12.


People of recent African ancestry develop kidney disease at much higher rates than most other groups. Two specific coding variants in the Apolipoprotein-L1 gene APOL1 termed G1 and G2 are the causal drivers of much of this difference in risk, following a recessive pattern of inheritance. However, most individuals with a high-risk APOL1 genotype do not develop overt kidney disease, prompting interest in identifying those factors that interact with APOL1 We performed an admixture mapping study to identify genetic modifiers of APOL1-associated kidney disease. Individuals with two APOL1 risk alleles and focal segmental glomerulosclerosis (FSGS) have significantly increased African ancestry at the UBD (also known as FAT10) locus. UBD is a ubiquitin-like protein modifier that targets proteins for proteasomal degradation. African ancestry at the UBD locus correlates with lower levels of UBD expression. In cell-based experiments, the disease-associated APOL1 alleles (known as G1 and G2) lead to increased abundance of UBD mRNA but to decreased levels of UBD protein. UBD gene expression inversely correlates with G1 and G2 APOL1-mediated cell toxicity, as well as with levels of G1 and G2 APOL1 protein in cells. These studies support a model whereby inflammatory stimuli up-regulate both UBD and APOL1, which interact in a functionally important manner. UBD appears to mitigate APOL1-mediated toxicity by targeting it for destruction. Thus, genetically encoded differences in UBD and UBD expression appear to modify the APOL1-associated kidney phenotype.

Keywords: APOL1; FAT10; FSGS; UBD; kidney.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Alleles
  • Apolipoprotein L1 / genetics*
  • Black or African American / statistics & numerical data*
  • Genetic Predisposition to Disease
  • Genotype
  • Glomerulosclerosis, Focal Segmental / ethnology
  • Glomerulosclerosis, Focal Segmental / genetics*
  • Glomerulosclerosis, Focal Segmental / pathology*
  • Humans
  • Polymorphism, Single Nucleotide*
  • Risk Factors
  • Ubiquitins / genetics
  • Ubiquitins / metabolism*


  • APOL1 protein, human
  • Apolipoprotein L1
  • UBD protein, human
  • Ubiquitins

Associated data

  • figshare/10.6084/m9.figshare.5917771