Nutritional geometry and fitness consequences in Drosophila suzukii, the Spotted-Wing Drosophila
- PMID: 29531699
- PMCID: PMC5838031
- DOI: 10.1002/ece3.3849
Nutritional geometry and fitness consequences in Drosophila suzukii, the Spotted-Wing Drosophila
Abstract
Since its arrival to North America less than a decade ago, the invasive Spotted-Wing Drosophila (Drosophila suzukii) has inflicted substantial economic losses on soft fruit agriculture due to its ability to oviposit into ripening fruits. More effective management approaches for this species are needed, but little is known about the factors that influence behavioral choices made by D. suzukii when selecting hosts, or the consequences that their offspring experience when developing in different environments. Using a nutritional geometry methodology, we found that the ratio of proteins-to-carbohydrates (P:C) present in media greatly influenced adult D. suzukii behavior and subsequent offspring development. Whereas adult flies showed a strong bias in their oviposition and association behaviors toward carbohydrate-rich foods, larval survival and eclosion rate were strongly dependent on protein availability. Here, we explore the preference-performance hypothesis (PPH), in which females are predicted to oviposit on medias that provide the greatest offspring benefits, in regard to its relevance in D. suzukii behavior and consequences for management. Our results provide valuable insight into the ecology and evolution of this species that may hopefully lead to more effective management strategies.
Keywords: Drosophila suzukii; Spotted‐Wing Drosophila; carbohydrates; diet; nutrition; nutritional geometry; protein.
Figures
Similar articles
-
The Protein Paradox: Elucidating the Complex Nutritional Ecology of the Invasive Berry Pest, Spotted-Wing Drosophila (Diptera: Drosophila suzukii).Front Insect Sci. 2021 Dec 23;1:787169. doi: 10.3389/finsc.2021.787169. eCollection 2021. Front Insect Sci. 2021. PMID: 38468895 Free PMC article. Review.
-
Nutrient-Dependent Impact of Microbes on Drosophila suzukii Development.mBio. 2018 Mar 20;9(2):e02199-17. doi: 10.1128/mBio.02199-17. mBio. 2018. PMID: 29559576 Free PMC article.
-
Evolutionary shifts in taste coding in the fruit pest Drosophila suzukii.Elife. 2021 Feb 22;10:e64317. doi: 10.7554/eLife.64317. Elife. 2021. PMID: 33616529 Free PMC article.
-
Adaptation to new nutritional environments: larval performance, foraging decisions, and adult oviposition choices in Drosophila suzukii.BMC Ecol. 2017 Jun 7;17(1):21. doi: 10.1186/s12898-017-0131-2. BMC Ecol. 2017. PMID: 28592264 Free PMC article.
-
Advances in the Chemical Ecology of the Spotted Wing Drosophila (Drosophila suzukii) and its Applications.J Chem Ecol. 2018 Oct;44(10):922-939. doi: 10.1007/s10886-018-1000-y. Epub 2018 Jul 27. J Chem Ecol. 2018. PMID: 30054769 Review.
Cited by
-
The importance of time in nutrient regulation: a case study with spotted-wing Drosophila (Drosophila suzukii).Front Insect Sci. 2023 Jul 20;3:1105531. doi: 10.3389/finsc.2023.1105531. eCollection 2023. Front Insect Sci. 2023. PMID: 38469468 Free PMC article.
-
The Protein Paradox: Elucidating the Complex Nutritional Ecology of the Invasive Berry Pest, Spotted-Wing Drosophila (Diptera: Drosophila suzukii).Front Insect Sci. 2021 Dec 23;1:787169. doi: 10.3389/finsc.2021.787169. eCollection 2021. Front Insect Sci. 2021. PMID: 38468895 Free PMC article. Review.
-
Effect of acetic acid bacteria colonization on oviposition and feeding site choice in Drosophila suzukii and its related species.MicroPubl Biol. 2024 Feb 6;2024:10.17912/micropub.biology.001111. doi: 10.17912/micropub.biology.001111. eCollection 2024. MicroPubl Biol. 2024. PMID: 38404921 Free PMC article.
-
Metabolic consequences of various fruit-based diets in a generalist insect species.Elife. 2023 Jun 6;12:e84370. doi: 10.7554/eLife.84370. Elife. 2023. PMID: 37278030 Free PMC article.
-
Effect of acetic acid bacteria colonization on oviposition and feeding site choice in Drosophila suzukii and its related species.bioRxiv [Preprint]. 2023 Mar 23:2023.03.20.533419. doi: 10.1101/2023.03.20.533419. bioRxiv. 2023. PMID: 36993389 Free PMC article. Updated. Preprint.
References
-
- Abraham, J. , Zhang, A. , Angeli, S. , Abubeker, S. , Michel, C. , Feng, Y. , & Rodriguez‐Saona, C. (2015). Behavioral and antennal responses of Drosophila suzukii (Diptera: Drosophilidae) to volatiles from fruit extracts. Environmental Entomology, 44(2), 356–367. https://doi.org/10.1093/ee/nvv013 - DOI - PubMed
-
- Anderson, L. H. , Kristensen, T. N. , Loeschcke, V. , Toft, S. , & Mayntz, D. (2010). Protein and carbohydrate composition of larval food affects tolerance to thermal stress and desiccation in adult Drosophila melanogaster . Journal of Insect Physiology, 56, 336–340. https://doi.org/10.1016/j.jinsphys.2009.11.006 - DOI - PubMed
-
- Ashburner, M. , Golic, K. G. , & Hawley, R. S. (2005). Drosophila: A laboratory handbook, 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
-
- Atallah, J. , Teixeira, L. , Salazar, R. , Zaragoza, G. , & Artyom, K. (2014). The making of a pest: The evolution of a fruit‐penetrating ovipositor in Drosophila suzukii and related species. Proceedings of the Royal Society B, 281, 20132840 https://doi.org/10.1098/rspb.2013.2840 - DOI - PMC - PubMed
-
- Begon, M. (1986). Yeasts and Drosophila In shburner M. A., Carson H. & Thompson J. N. (Eds.), The Genetics and Biology of Drosophila Vol. 3b (pp. 345–383). London, UK: Academic Press;
Associated data
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
