Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Apr 5;9(7):1668-1673.
doi: 10.1021/acs.jpclett.8b00124. Epub 2018 Mar 19.

Predicting the Band Gaps of Inorganic Solids by Machine Learning

Affiliations

Predicting the Band Gaps of Inorganic Solids by Machine Learning

Ya Zhuo et al. J Phys Chem Lett. .

Abstract

A machine-learning model is developed that can accurately predict the band gap of inorganic solids based only on composition. This method uses support vector classification to first separate metals from nonmetals, followed by quantitatively predicting the band gap of the nonmetals using support vector regression. The superb accuracy of the regression model is obtained by using a training set composed entirely of experimentally measured band gaps and utilizing only compositional descriptors. In fact, because of the unique training set of experimental data, the machine learning predicted band gaps are significantly closer to the experimentally reported values than DFT (PBE-level) calculated band gaps. Not only does this resulting tool provide the ability to accurately predict the band gap for any composition but also the versatility and speed of the prediction based only on composition will make this a great resource to screen inorganic phase space and direct the development of functional inorganic materials.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources