Serine Hydroxymethyltransferase ShrA (PA2444) Controls Rugose Small-Colony Variant Formation in Pseudomonas aeruginosa
- PMID: 29535691
- PMCID: PMC5835335
- DOI: 10.3389/fmicb.2018.00315
Serine Hydroxymethyltransferase ShrA (PA2444) Controls Rugose Small-Colony Variant Formation in Pseudomonas aeruginosa
Abstract
Pseudomonas aeruginosa causes many biofilm infections, and the rugose small-colony variants (RSCVs) of this bacterium are important for infection. We found here that inactivation of PA2444, which we determined to be a serine hydroxymethyltransferase (SHMT), leads to the RSCV phenotype of P. aeruginosa PA14. In addition, loss of PA2444 increases biofilm formation by two orders of magnitude, increases exopolysaccharide by 45-fold, and abolishes swarming. The RSCV phenotype is related to higher cyclic diguanylate concentrations due to increased activity of the Wsp chemosensory system, including diguanylate cyclase WspR. By characterizing the PA2444 enzyme in vitro, we determined the physiological function of PA2444 protein by relating it to S-adenosylmethionine (SAM) concentrations and methylation of a membrane bound methyl-accepting chemotaxis protein WspA. A whole transcriptome analysis also revealed PA2444 is related to the redox state of the cells, and the altered redox state was demonstrated by an increase in the intracellular NADH/NAD+ ratio. Hence, we provide a mechanism for how an enzyme of central metabolism controls the community behavior of the bacterium, and suggest the PA2444 protein should be named ShrA for serine hydroxymethyltransferase related to rugose colony formation.
Keywords: Pseudomonas aeruginosa; biofilm formation; rugose; serine hydroxymethyltransferase; small colony variants.
Figures
Similar articles
-
Pseudomonas aeruginosa Interstrain Dynamics and Selection of Hyperbiofilm Mutants during a Chronic Infection.mBio. 2019 Aug 13;10(4):e01698-19. doi: 10.1128/mBio.01698-19. mBio. 2019. PMID: 31409682 Free PMC article.
-
Rugose small colony variant and its hyper-biofilm in Pseudomonas aeruginosa: Adaption, evolution, and biotechnological potential.Biotechnol Adv. 2021 Dec;53:107862. doi: 10.1016/j.biotechadv.2021.107862. Epub 2021 Oct 28. Biotechnol Adv. 2021. PMID: 34718136 Review.
-
Mutations in surface-sensing receptor WspA lock the Wsp signal transduction system into a constitutively active state.Environ Microbiol. 2022 Mar;24(3):1150-1165. doi: 10.1111/1462-2920.15763. Epub 2021 Sep 20. Environ Microbiol. 2022. PMID: 34499799
-
Tyrosine phosphatase TpbA controls rugose colony formation in Pseudomonas aeruginosa by dephosphorylating diguanylate cyclase TpbB.Biochem Biophys Res Commun. 2010 Nov 12;402(2):351-5. doi: 10.1016/j.bbrc.2010.10.032. Epub 2010 Oct 12. Biochem Biophys Res Commun. 2010. PMID: 20946878 Free PMC article.
-
Small colony variants of Pseudomonas aeruginosa in chronic bacterial infection of the lung in cystic fibrosis.Future Microbiol. 2015;10(2):231-9. doi: 10.2217/fmb.14.107. Future Microbiol. 2015. PMID: 25689535 Review.
Cited by
-
Comparative Proteomic Analysis of Protein Patterns of Stenotrophomonas maltophilia in Biofilm and Planktonic Lifestyles.Microorganisms. 2023 Feb 9;11(2):442. doi: 10.3390/microorganisms11020442. Microorganisms. 2023. PMID: 36838406 Free PMC article.
-
Pseudomonas aeruginosa reference strains PAO1 and PA14: A genomic, phenotypic, and therapeutic review.Front Microbiol. 2022 Oct 13;13:1023523. doi: 10.3389/fmicb.2022.1023523. eCollection 2022. Front Microbiol. 2022. PMID: 36312971 Free PMC article. Review.
-
Cysteamine Inhibits Glycine Utilisation and Disrupts Virulence in Pseudomonas aeruginosa.Front Cell Infect Microbiol. 2021 Sep 22;11:718213. doi: 10.3389/fcimb.2021.718213. eCollection 2021. Front Cell Infect Microbiol. 2021. PMID: 34631600 Free PMC article.
-
Identifying potential inhibitors of biofilm-antagonistic proteins to promote biofilm formation: a virtual screening and molecular dynamics simulations approach.Mol Divers. 2022 Aug;26(4):2135-2147. doi: 10.1007/s11030-021-10320-5. Epub 2021 Sep 21. Mol Divers. 2022. PMID: 34546549
-
Pseudomonas aeruginosa as a Model To Study Chemosensory Pathway Signaling.Microbiol Mol Biol Rev. 2021 Jan 13;85(1):e00151-20. doi: 10.1128/MMBR.00151-20. Print 2021 Feb 17. Microbiol Mol Biol Rev. 2021. PMID: 33441490 Free PMC article. Review.
References
-
- Berg J. M., Tymoczko J. L., Stryer L. (2002). Biochemistry. New York, NY: W. H. Freeman and Company.
LinkOut - more resources
Full Text Sources
Other Literature Sources
