Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Apr 2:249:52-56.
doi: 10.1016/j.virusres.2018.03.006. Epub 2018 Mar 12.

Identification and analysis of host proteins that interact with the 3'-untranslated region of tick-borne encephalitis virus genomic RNA

Affiliations
Free article

Identification and analysis of host proteins that interact with the 3'-untranslated region of tick-borne encephalitis virus genomic RNA

Memi Muto et al. Virus Res. .
Free article

Abstract

Tick-borne encephalitis virus (TBEV) causes severe neurological disease, but the pathogenetic mechanism is unclear. The conformational structure of the 3'-untranslated region (UTR) of TBEV is associated with its virulence. We tried to identify host proteins interacting with the 3'-UTR of TBEV. Cellular proteins of HEK293T cells were co-precipitated with biotinylated RNAs of the 3'-UTR of low- and high-virulence TBEV strains and subjected to mass spectrometry analysis. Fifteen host proteins were found to bind to the 3'-UTR of TBEV, four of which-cold shock domain containing-E1 (CSDE1), spermatid perinuclear RNA binding protein (STRBP), fragile X mental retardation protein (FMRP), and interleukin enhancer binding factor 3 (ILF3)-bound specifically to that of the low-virulence strain. An RNA immunoprecipitation and pull-down assay confirmed the interactions of the complete 3'-UTRs of TBEV genomic RNA with CSDE1, FMRP, and ILF3. Partial deletion of the stem loop (SL) 3 to SL 5 structure of the variable region of the 3'-UTR did not affect interactions with the host proteins, but the interactions were markedly suppressed by deletion of the complete SL 3, 4, and 5 structures, as in the high-virulence TBEV strain. Further analysis of the roles of host proteins in the neurologic pathogenicity of TBEV is warranted.

Keywords: 3′-Untranslated region; Host factor; Pathogenicity; Tick-borne encephalitis virus.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms