Circuit-selective properties of glutamatergic inputs to the rat prelimbic cortex and their alterations in neuropathic pain
- PMID: 29550939
- PMCID: PMC5997539
- DOI: 10.1007/s00429-018-1648-7
Circuit-selective properties of glutamatergic inputs to the rat prelimbic cortex and their alterations in neuropathic pain
Abstract
Functional deactivation of the prefrontal cortex (PFC) is a critical step in the neuropathic pain phenotype. We performed optogenetic circuit dissection to study the properties of ventral hippocampal (vHipp) and thalamic (MDTh) inputs to L5 pyramidal cells in acute mPFC slices and to test whether alterations in these inputs contribute to mPFC deactivation in neuropathic pain. We found that: (1) both the vHipp and MDTh inputs elicit monosynaptic excitatory and polysynaptic inhibitory currents. (2) The strength of the excitatory MDTh input is uniform, while the vHipp input becomes progressively stronger along the dorsal-ventral axis. (3) Synaptic current kinetics suggests that the MDTh inputs contact distal, while the vHipp inputs contact proximal dendritic sections. (4) The longer delay of inhibitory currents in response to vHipp compared to MDTh inputs suggests that they are activated by feedback and feed-forward circuitries, respectively. (5) One week after a peripheral neuropathic injury, both glutamatergic inputs are modified: MDTh responses are smaller, without evidence of presynaptic changes, while the probability of release at vHipp-mPFC synapses becomes lower, without significant change in current amplitude. Thus, dysregulation of both these inputs likely contributes to the mPFC deactivation in neuropathic pain and may impair PFC-dependent cognitive tasks.
Keywords: Channelrhodopsin; Connectivity; Hippocampus; Pyramidal cell; SNI; Thalamus.
Conflict of interest statement
The authors declare no competing financial interest
Figures
Similar articles
-
Loss of M1 Receptor Dependent Cholinergic Excitation Contributes to mPFC Deactivation in Neuropathic Pain.J Neurosci. 2017 Mar 1;37(9):2292-2304. doi: 10.1523/JNEUROSCI.1553-16.2017. Epub 2017 Jan 30. J Neurosci. 2017. PMID: 28137966 Free PMC article.
-
Peripheral Neuropathy Induces HCN Channel Dysfunction in Pyramidal Neurons of the Medial Prefrontal Cortex.J Neurosci. 2015 Sep 23;35(38):13244-56. doi: 10.1523/JNEUROSCI.0799-15.2015. J Neurosci. 2015. PMID: 26400952 Free PMC article.
-
Afferent drive of medial prefrontal cortex by hippocampus and amygdala is altered in MAM-treated rats: evidence for interneuron dysfunction.Neuropsychopharmacology. 2013 Sep;38(10):1871-80. doi: 10.1038/npp.2013.64. Epub 2013 Mar 7. Neuropsychopharmacology. 2013. PMID: 23471079 Free PMC article.
-
Inhibitory Gating of Basolateral Amygdala Inputs to the Prefrontal Cortex.J Neurosci. 2016 Sep 7;36(36):9391-406. doi: 10.1523/JNEUROSCI.0874-16.2016. J Neurosci. 2016. PMID: 27605614 Free PMC article.
-
Differential Rearrangement of Excitatory Inputs to the Medial Prefrontal Cortex in Chronic Pain Models.Front Neural Circuits. 2021 Dec 24;15:791043. doi: 10.3389/fncir.2021.791043. eCollection 2021. Front Neural Circuits. 2021. PMID: 35002635 Free PMC article. Review.
Cited by
-
Chronic Pain-Related Cognitive Deficits: Preclinical Insights into Molecular, Cellular, and Circuit Mechanisms.Mol Neurobiol. 2024 Mar 12. doi: 10.1007/s12035-024-04073-z. Online ahead of print. Mol Neurobiol. 2024. PMID: 38470516 Review.
-
A mesocortical glutamatergic pathway modulates neuropathic pain independent of dopamine co-release.Nat Commun. 2024 Jan 20;15(1):643. doi: 10.1038/s41467-024-45035-2. Nat Commun. 2024. PMID: 38245542 Free PMC article.
-
Corticotropin-releasing hormone neurons control trigeminal neuralgia-induced anxiodepression via a hippocampus-to-prefrontal circuit.Sci Adv. 2024 Jan 19;10(3):eadj4196. doi: 10.1126/sciadv.adj4196. Epub 2024 Jan 19. Sci Adv. 2024. PMID: 38241377 Free PMC article.
-
Loss of spines in the prelimbic cortex is detrimental to working memory in mice with early-life adversity.Mol Psychiatry. 2023 Aug;28(8):3444-3458. doi: 10.1038/s41380-023-02197-7. Epub 2023 Jul 27. Mol Psychiatry. 2023. PMID: 37500828 Free PMC article.
-
Pain-related cortico-limbic plasticity and opioid signaling.Neuropharmacology. 2023 Jun 15;231:109510. doi: 10.1016/j.neuropharm.2023.109510. Epub 2023 Mar 20. Neuropharmacology. 2023. PMID: 36944393 Review.
References
-
- Baker KS, Gibson S, Georgiou-Karistianis N, Roth RM, Giummarra MJ. Everyday Executive Functioning in Chronic Pain: Specific Deficits in Working Memory and Emotion Control, Predicted by Mood, Medications, and Pain Interference. The Clinical journal of pain 2015 - PubMed
-
- Block AE, Dhanji H, Thompson-Tardif SF, Floresco SB. Thalamic-prefrontal cortical-ventral striatal circuitry mediates dissociable components of strategy set shifting. Cereb Cortex. 2007;17(7):1625–36. - PubMed
-
- Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods. 1994;53(1):55–63. - PubMed
-
- Cardoso-Cruz H, Sousa M, Vieira JB, Lima D, Galhardo V. Prefrontal cortex and mediodorsal thalamus reduced connectivity is associated with spatial working memory impairment in rats with inflammatory pain. Pain. 2013;154(11):2397–406. - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
