Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Mar 20;17(1):75.
doi: 10.1186/s12943-018-0823-z.

The decade of exosomal long RNA species: an emerging cancer antagonist

Affiliations
Free PMC article
Review

The decade of exosomal long RNA species: an emerging cancer antagonist

Ruihao Zhou et al. Mol Cancer. .
Free PMC article

Abstract

Exosomes have emerged as a novel approach for the treatment and diagnosis of cancer after RNA content was discovered in exosomes in 2007. As important meditators of intercellular communication, exosomes have become a strong focus of investigation for researchers in the past decade, as witnessed through the exponential increase of research on exosomes. The capability of exosomes to transfer functionally active cargo highlights their importance as promising biomarkers and diagnostic molecules, as well as prospective drug delivery systems. The accessibility of exosomes in nearly all biofluids additionally alludes to its unprecedented ability in various types of cancers due to its extensive impact on tumor formation and progression. This review analyzes the role of exosomal long RNA species, which is comprised of mRNA, lncRNA, and circRNA, in tumor formation and progression, with an emphasis on their potential as future diagnostic biomarkers and treatment vectors in cancer biology. Their alignment with the development of exosomal databases is further examined in this review, in view of the accumulation of studies published on exosomes in the past decade.

Keywords: Cancer biology; Exosome; Tumor formation and progression; circRNA; esRNA; lncRNA; mRNA.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
The biogenesis of exosomes. Beginning with endocytosis, the biogenesis of exosomes initially leads to the formation of endosomes. Further invagination of the endosomal membrane results in the incorporation of cytosolic protein or RNA within the endosome. The resulting multi-vesicular bodies (MVBs) then fuse with the plasma membrane and release the exosomes into the extracellular space, allowing the exosomes to interact with the recipient cells via endocytosis, direct fusion, or the binding of surface proteins. Once inside the recipient cells, RNA content, such as lncRNAs, can target proteins or epigenetic marks—affecting protein function and controlling the state of gene expression
Fig. 2
Fig. 2
The role of exosomes in cancer biology. Due to their extensive effect on the tumor environment, released exosomes can promote angiogenesis and tumor metastasis, promote drug resistance, initiate immune responses, and advance cell proliferation and oncogenic cell transformation

Similar articles

Cited by

References

    1. Andreu Z, Yanez-Mo M. Tetraspanins in extracellular vesicle formation and function. Front Immunol. 2014;5:442. doi: 10.3389/fimmu.2014.00442. - DOI - PMC - PubMed
    1. Khushman M, Bhardwaj A, Patel GK, Laurini JA, Roveda K, Tan MC, Patton MC, Singh S, Taylor W, Singh AP. Exosomal Markers (CD63 and CD9) Expression Pattern Using Immunohistochemistry in Resected Malignant and Nonmalignant Pancreatic Specimens. Pancreas. 2017;46:782–788. doi: 10.1097/MPA.0000000000000847. - DOI - PMC - PubMed
    1. Sato-Kuwabara Y, Melo SA, Soares FA, Calin GA. The fusion of two worlds: non-coding RNAs and extracellular vesicles--diagnostic and therapeutic implications (Review) Int J Oncol. 2015;46:17–27. doi: 10.3892/ijo.2014.2712. - DOI - PMC - PubMed
    1. van Niel G, D'Angelo G, Raposo G: Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018. - PubMed
    1. Mittelbrunn M, Gutierrez-Vazquez C, Villarroya-Beltri C, Gonzalez S, Sanchez-Cabo F, Gonzalez MA, Bernad A, Sanchez-Madrid F. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun. 2011;2:282. doi: 10.1038/ncomms1285. - DOI - PMC - PubMed

Publication types