A molecularly imprinted polymer placed on the surface of graphene oxide and doped with Mn(II)-doped ZnS quantum dots for selective fluorometric determination of acrylamide

Mikrochim Acta. 2017 Dec 13;185(1):48. doi: 10.1007/s00604-017-2543-2.

Abstract

A polymer imprinted with acrylamide (AM-MIP) was synthesized on the surface of graphene oxide by surface polymerization of propionamide (serving as a dummy template), methacrylic acid (as the functional monomer) and ethylene glycol dimethacrylate (the cross-linker). ZnS quantum dots (QDs) doped with Mn(II) ions were added to the AM-MIP to act as fluorescence source. The AM-MIP was characterized by infrared spectroscopy, scanning electron microscopy and X-ray powder diffraction, suggesting that the imprinted layer was successfully grafted onto graphene oxide. The fluorescence of the doped QDs is quenched when loading the AM-MIP with acrylamide (AM), and the quenching effect is much stronger than the non-imprinted polymer (AM-NIP). Quenching follows Stern-Volmer kinetics. The combination of imprinting and fluorometric detection offer AM-IIP capability to accumulate trace AM before direct determination, omitting desorption and separation or other methods. The excitation and emission spectra of AM-MIP peak at 325 nm and 601 nm, respectively. Under optimal conditions, fluorescence drops linearly in the 0.5-60 μmol·L-1 acrylamide concentration range, and the detection limit is 0.17 μmol·L-1. The method has been applied to the determination of AM in spiked water samples and gave recoveries in the range from 100.2 to 104.5%, with relative standard deviations in the 1.9 to 3.9% range. In our perception, the AM-MIP presented here is a promising fluorescent probe for the detection of trace acrylamide in food. Graphical abstract Schematic of the preparation of graphene oxide coated with a molecularly imprinted polymer doped with Mn(II)-doped ZnS quantum dots. Propionamide serves as a dummy template. Acrylamide acts as a quencher of fluorescence, and this effect is used for its selective fluorometric determination.

Keywords: Fluorescent probe; Food pollutants; Polymerization; Pre-accumulation; Quenching effect; Selective recognition; Stern-Volmer plot; Surface molecular imprinting.

Publication types

  • Research Support, Non-U.S. Gov't