Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2018 Jun;45(6):2672-2680.
doi: 10.1002/mp.12890. Epub 2018 Apr 18.

Deep nets vs expert designed features in medical physics: An IMRT QA case study

Affiliations
Comparative Study

Deep nets vs expert designed features in medical physics: An IMRT QA case study

Yannet Interian et al. Med Phys. 2018 Jun.

Abstract

Purpose: The purpose of this study was to compare the performance of Deep Neural Networks against a technique designed by domain experts in the prediction of gamma passing rates for Intensity Modulated Radiation Therapy Quality Assurance (IMRT QA).

Method: A total of 498 IMRT plans across all treatment sites were planned in Eclipse version 11 and delivered using a dynamic sliding window technique on Clinac iX or TrueBeam Linacs. Measurements were performed using a commercial 2D diode array, and passing rates for 3%/3 mm local dose/distance-to-agreement (DTA) were recorded. Separately, fluence maps calculated for each plan were used as inputs to a convolution neural network (CNN). The CNNs were trained to predict IMRT QA gamma passing rates using TensorFlow and Keras. A set of model architectures, inspired by the convolutional blocks of the VGG-16 ImageNet model, were constructed and implemented. Synthetic data, created by rotating and translating the fluence maps during training, was created to boost the performance of the CNNs. Dropout, batch normalization, and data augmentation were utilized to help train the model. The performance of the CNNs was compared to a generalized Poisson regression model, previously developed for this application, which used 78 expert designed features.

Results: Deep Neural Networks without domain knowledge achieved comparable performance to a baseline system designed by domain experts in the prediction of 3%/3 mm Local gamma passing rates. An ensemble of neural nets resulted in a mean absolute error (MAE) of 0.70 ± 0.05 and the domain expert model resulted in a 0.74 ± 0.06.

Conclusions: Convolutional neural networks (CNNs) with transfer learning can predict IMRT QA passing rates by automatically designing features from the fluence maps without human expert supervision. Predictions from CNNs are comparable to a system carefully designed by physicist experts.

Keywords: IMRT; QA; quality assurance; radiation therapy; statistical analysis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources