How ecology shapes exploitation: a framework to predict the behavioural response of human and animal foragers along exploration-exploitation trade-offs

Ecol Lett. 2018 Jun;21(6):779-793. doi: 10.1111/ele.12949. Epub 2018 Apr 2.


Understanding how humans and other animals behave in response to changes in their environments is vital for predicting population dynamics and the trajectory of coupled social-ecological systems. Here, we present a novel framework for identifying emergent social behaviours in foragers (including humans engaged in fishing or hunting) in predator-prey contexts based on the exploration difficulty and exploitation potential of a renewable natural resource. A qualitative framework is introduced that predicts when foragers should behave territorially, search collectively, act independently or switch among these states. To validate it, we derived quantitative predictions from two models of different structure: a generic mathematical model, and a lattice-based evolutionary model emphasising exploitation and exclusion costs. These models independently identified that the exploration difficulty and exploitation potential of the natural resource controls the social behaviour of resource exploiters. Our theoretical predictions were finally compared to a diverse set of empirical cases focusing on fisheries and aquatic organisms across a range of taxa, substantiating the framework's predictions. Understanding social behaviour for given social-ecological characteristics has important implications, particularly for the design of governance structures and regulations to move exploited systems, such as fisheries, towards sustainability. Our framework provides concrete steps in this direction.

Keywords: Conflict; consumer-resource; cooperation; fish and fisheries; governance; human behaviour; predator-prey; social-ecological system; sustainability.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Conservation of Natural Resources
  • Ecology*
  • Ecosystem*
  • Fisheries
  • Humans
  • Population Dynamics