Placental lipoprotein lipase activity is positively associated with newborn adiposity

Placenta. 2018 Apr;64:53-60. doi: 10.1016/j.placenta.2018.03.001. Epub 2018 Mar 5.


Introduction: Recent data suggest that in addition to glucose, fetal growth is related to maternal triglycerides (TG). To reach the fetus, TG must be hydrolyzed to free fatty acids (FFA) and transported across the placenta, but regulation is uncertain. Placental lipoprotein lipase (pLPL) hydrolyzes TG, both dietary chylomicron TG (CM-TG) and very-low density lipoprotein TG (VLDL-TG), to FFA. This may promote fetal fat accretion by increasing the available FFA pool for placental uptake. We tested the novel hypothesis that pLPL activity, but not maternal adipose tissue LPL activity, is associated with newborn adiposity and higher maternal TG.

Methods: Twenty mothers (n = 13 normal-weight; n = 7 obese) were prospectively recruited. Maternal glucose, insulin, TG (total, CM-TG, VLDL-TG), and FFA were measured at 14-16, 26-28, and 36-37 weeks, and adipose tissue LPL was measured at 26-28 weeks. At term delivery, placental villous biopsies were immediately analyzed for pLPL enzymatic activity. Newborn percent body fat (newborn %fat) was assessed by skinfolds.

Results: Placental LPL activity was positively correlated with birthweight (r = 0.48;P = 0.03) and newborn %fat (r = 0.59;P = 0.006), further strengthened by correcting for gestational age at delivery (r = 0.75;P = 0.0001), but adipose tissue LPL was not. Maternal TG and BMI were not correlated with pLPL activity. Additionally, pLPL gene expression, while modestly correlated with enzymatic activity (r = 0.53;P < 0.05), was not correlated with newborn adiposity.

Discussion: This is the first study to show a positive correlation between pLPL activity and newborn %fat. Placental lipase regulation and the role of pLPL in pregnancies characterized by nutrient excess and fetal overgrowth warrant further investigation.

Keywords: Fetal fat accretion; Fetal growth; Lipoprotein lipase; Newborn adiposity; Placenta; Triglycerides.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Adipose Tissue / enzymology
  • Adiposity*
  • Adult
  • Case-Control Studies
  • Female
  • Humans
  • Infant, Newborn / metabolism*
  • Lipoprotein Lipase / metabolism*
  • Male
  • Obesity / enzymology*
  • Placenta / enzymology*
  • Pregnancy
  • Pregnancy Complications / enzymology*
  • Prospective Studies


  • Lipoprotein Lipase