A Rules-Based Algorithm to Prioritize Poor Prognosis Cancer Patients in Need of Advance Care Planning

J Palliat Med. 2018 Jun;21(6):846-849. doi: 10.1089/jpm.2017.0408. Epub 2018 Mar 13.

Abstract

Background: Accurate understanding of the prognosis of an advanced cancer patient can lead to decreased aggressive care at the end of life and earlier hospice enrollment.

Objective: Our goal was to determine the association between high-risk clinical events identified by a simple, rules-based algorithm and decreased overall survival, to target poor prognosis cancer patients who would urgently benefit from advanced care planning.

Design: A retrospective analysis was performed on outpatient oncology patients with an index visit from April 1, 2015, through June 30, 2015. We examined a three-month window for "high-risk events," defined as (1) change in chemotherapy, (2) emergency department (ED) visit, and (3) hospitalization. Patients were followed until January 31, 2017.

Setting/subjects: A total of 219 patients receiving palliative chemotherapy at the University of Chicago Medicine with a prognosis of ≤12 months were included.

Measurements: The main outcome was overall survival, and each "high-risk event" was treated as a time-varying covariate in a Cox proportional hazards regression model to calculate a hazard ratio (HR) of death.

Results: A change in chemotherapy regimen, ED visit, hospitalization, and at least one high-risk event occurred in 54% (118/219), 10% (22/219), 26% (57/219), and 67% (146/219) of patients, respectively. The adjusted HR of death for patients with a high-risk event was 1.72 (95% confidence interval [CI] 1.19-2.46, p = 0.003), with hospitalization reaching significance (HR 2.74, 95% CI 1.84-4.09, p < 0.001).

Conclusions: The rules-based algorithm identified those with the greatest risk of death among a poor prognosis patient group. Implementation of this algorithm in the electronic health record can identify patients with increased urgency to address goals of care.

Keywords: advance care planning; advance directives; algorithm; neoplasm; oncology; outpatient.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Advance Care Planning / standards*
  • Aged
  • Aged, 80 and over
  • Algorithms*
  • Chicago
  • Decision Making
  • Female
  • Guidelines as Topic*
  • Humans
  • Male
  • Middle Aged
  • Neoplasms / mortality*
  • Neoplasms / nursing*
  • Prognosis*
  • Proportional Hazards Models
  • Retrospective Studies
  • Survival Analysis*