Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 May-Jun:107:175-185.
doi: 10.1016/j.jinsphys.2018.04.006. Epub 2018 Apr 9.

Redefining reproductive dormancy in Drosophila as a general stress response to cold temperatures

Affiliations
Free article

Redefining reproductive dormancy in Drosophila as a general stress response to cold temperatures

Manolis Lirakis et al. J Insect Physiol. 2018 May-Jun.
Free article

Abstract

Organisms regularly encounter unfavorable conditions and the genetic adaptations facilitating survival have been of long-standing interest to evolutionary biologists. Winter is one particularly stressful condition for insects, during which they encounter low temperatures and scarcity of food. Despite dormancy being a well-studied adaptation to facilitate overwintering, there is still considerable controversy about the distribution of dormancy among natural populations and between species in Drosophila. The current definition of dormancy as developmental arrest of oogenesis at the previtellogenic stage (stage 7) distinguishes dormancy from general stress related block of oogenesis at early vitellogenic stages (stages 8 - 9). In an attempt to resolve this, we scrutinized reproductive dormancy in D. melanogaster and D. simulans. We show that dormancy shows the same hallmarks of arrest of oogenesis at stage 9, as described for other stressors and propose a new classification for dormancy. Applying this modified classification, we show that both species express dormancy in cosmopolitan and African populations, further supporting that dormancy uses an ancestral pathway induced by environmental stress. While we found significant differences between individuals and the two Drosophila species in their sensitivity to cold temperature stress, we also noted that extreme temperature stress (8 °C) resulted in very strong dormancy incidence, which strongly reduced the differences seen at less extreme temperatures. We conclude that dormancy in Drosophila should not be considered a special trait, but is better understood as a generic stress response occurring at low temperatures.

Keywords: Degeneration; Dormancy; Drosophila; Oogenesis; Stress response.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources