Mapping gold-labeled IgE receptors on mast cells by scanning electron microscopy: receptor distributions revealed by silver enhancement, backscattered electron imaging, and digital image analysis

J Histochem Cytochem. 1988 May;36(5):493-502. doi: 10.1177/36.5.2965720.

Abstract

Immunogold labeling and silver enhancement techniques are widely used to determine density and distribution of cell membrane receptors by light and transmission electron microscopy. However, these techniques have not been widely used for receptor detection by scanning electron microscopy. We used antigen- or protein A-conjugated colloidal gold particles, together with silver enhancement, sequential secondary and back-scattered electron imaging (SEI and BEI), and digital image processing, to explore cell surface distribution of IgE-receptor complexes on RBL-2H3 cells, a rat leukemia line that provides a model for the study of mucosal mast cells. Cells were first incubated with a monoclonal antidinitrophenol IgE (anti-DNP-IgE) that binds with high affinity to cell surface IgE receptors. The resulting IgE-receptor complexes were cross-linked either with the multivalent antigen, DNP-BSA-gold, or with a polyclonal anti-IgE antibody. Antibody-treated cells were labeled after fixation with protein A-gold. Fixed, gold-labeled cell monolayers were silver enhanced (or not), dehydrated, critical point-dried, and coated with gold-palladium (for SEI analysis) or carbon (for combined SEI/BEI analysis). They were observed in an Hitachi S800 SEM equipped with a field emission tip and a Robinson backscattered electron detector. An image processor (MegaVision 1024XM) digitized images directly from the S800 microscope at 500-1000 line resolution. Silver enhancement significantly improves detection of gold particles in both SEI and BEI modes of SEM. On gold-palladium-coated samples, 20-nm particles are resolved by SEI after enhancement. BEI resolves 15-nm particles without enhancement and 5- or 10-nm particles are resolved by BEI on silver-enhanced, carbon-coated samples. Neither BEI nor SEI alone can yield high resolution topographical maps of receptor distribution (BEI forms images on the basis of atomic number contrast which reveals gold but not surface features). Image analysis techniques were therefore introduced to digitize, enhance, and process BEI and SEI images of the same field of view. The resulting high-contrast, high-resolution images were superimposed, yielding well-resolved maps of the distribution of antigen-IgE-receptor complexes on the surface of RBL-2H3 mast cells. The maps are stored in digital form, as required for computer-based quantitative morphometric analyses. These techniques of silver enhancement, combined BEI/SEI imaging, and digital image analysis can be applied to analyze density and distribution of any gold-labeled ligand on its target cell.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Cell Line
  • Image Processing, Computer-Assisted
  • Immunohistochemistry
  • Mast Cells / analysis
  • Mast Cells / ultrastructure*
  • Microscopy, Electron
  • Microscopy, Electron, Scanning
  • Receptors, Fc / analysis*
  • Receptors, IgE
  • Silver
  • Surface Properties

Substances

  • Receptors, Fc
  • Receptors, IgE
  • Silver