Lepidosaurian diversity in the Mesozoic-Palaeogene: the potential roles of sampling biases and environmental drivers
- PMID: 29657788
- PMCID: PMC5882712
- DOI: 10.1098/rsos.171830
Lepidosaurian diversity in the Mesozoic-Palaeogene: the potential roles of sampling biases and environmental drivers
Abstract
Lepidosauria is a speciose clade with a long evolutionary history, but there have been few attempts to explore its taxon richness through time. Here we estimate patterns of terrestrial lepidosaur genus diversity for the Triassic-Palaeogene (252-23 Ma), and compare observed and sampling-corrected richness curves generated using Shareholder Quorum Subsampling and classical rarefaction. Generalized least-squares regression (GLS) is used to investigate the relationships between richness, sampling and environmental proxies. We found low levels of richness from the Triassic until the Late Cretaceous (except in the Kimmeridgian-Tithonian of Europe). High richness is recovered for the Late Cretaceous of North America, which declined across the K-Pg boundary but remained relatively high throughout the Palaeogene. Richness decreased following the Eocene-Oligocene Grande Coupure in North America and Europe, but remained high in North America and very high in Europe compared to the Late Cretaceous; elsewhere data are lacking. GLS analyses indicate that sampling biases (particularly, the number of fossil collections per interval) are the best explanation for long-term face-value genus richness trends. The lepidosaur fossil record presents many problems when attempting to reconstruct past diversity, with geographical sampling biases being of particular concern, especially in the Southern Hemisphere.
Keywords: Grande Coupure; Lepidosauria; Mesozoic; Palaeogene; species-richness; subsampling.
Conflict of interest statement
We declare we have no competing interests.
Figures
Similar articles
-
Controlling for the species-area effect supports constrained long-term Mesozoic terrestrial vertebrate diversification.Nat Commun. 2017 May 22;8:15381. doi: 10.1038/ncomms15381. Nat Commun. 2017. PMID: 28530240 Free PMC article.
-
Testing the effect of the rock record on diversity: a multidisciplinary approach to elucidating the generic richness of sauropodomorph dinosaurs through time.Biol Rev Camb Philos Soc. 2011 Feb;86(1):157-81. doi: 10.1111/j.1469-185X.2010.00139.x. Biol Rev Camb Philos Soc. 2011. PMID: 20412186
-
Mountain uplift explains differences in Palaeogene patterns of mammalian evolution and extinction between North America and Europe.Proc Biol Sci. 2015 Jun 22;282(1809):20150136. doi: 10.1098/rspb.2015.0136. Proc Biol Sci. 2015. PMID: 26041349 Free PMC article.
-
'Fish' (Actinopterygii and Elasmobranchii) diversification patterns through deep time.Biol Rev Camb Philos Soc. 2016 Nov;91(4):950-981. doi: 10.1111/brv.12203. Epub 2015 Jun 23. Biol Rev Camb Philos Soc. 2016. PMID: 26105527 Review.
-
Evidence for rapid climate change in the Mesozoic-Palaeogene greenhouse world.Philos Trans A Math Phys Eng Sci. 2003 Sep 15;361(1810):1885-916; discussion 1916. doi: 10.1098/rsta.2003.1240. Philos Trans A Math Phys Eng Sci. 2003. PMID: 14558900 Review.
Cited by
-
A Triassic crown squamate.Sci Adv. 2022 Dec 2;8(48):eabq8274. doi: 10.1126/sciadv.abq8274. Epub 2022 Dec 2. Sci Adv. 2022. PMID: 36459546 Free PMC article.
-
The early diversification of ray-finned fishes (Actinopterygii): hypotheses, challenges and future prospects.Biol Rev Camb Philos Soc. 2023 Feb;98(1):284-315. doi: 10.1111/brv.12907. Epub 2022 Oct 3. Biol Rev Camb Philos Soc. 2023. PMID: 36192821 Free PMC article.
-
The affinities of the Late Triassic Cryptovaranoides and the age of crown squamates.R Soc Open Sci. 2023 Oct 11;10(10):230968. doi: 10.1098/rsos.230968. eCollection 2023 Oct. R Soc Open Sci. 2023. PMID: 37830017 Free PMC article.
-
Challenges and directions in analytical paleobiology.Paleobiology. 2023 Aug;49(3):377-393. doi: 10.1017/pab.2023.3. Epub 2023 Feb 27. Paleobiology. 2023. PMID: 37809321 Free PMC article.
-
Evolutionary origins of the prolonged extant squamate radiation.Nat Commun. 2022 Nov 29;13(1):7087. doi: 10.1038/s41467-022-34217-5. Nat Commun. 2022. PMID: 36446761 Free PMC article.
References
-
- Jones MEH, Anderson CL, Hipsley CA, Müller J, Evans SE, Schoch RR. 2013. Integration of molecules and new fossils supports a Triassic origin for Lepidosauria (lizards, snakes, and tuatara). BMC Evol. Biol. 13, 208 (doi:10.1186/1471-2148-13-208) - DOI - PMC - PubMed
-
- Hay JM, Sarre SD, Lambert DM, Allendorf FW, Daugherty CH. 2010. Genetic diversity and taxonomy: a reassessment of species designation in tuatara (Sphenodon: Reptilia). Conserv. Genet. 11, 1063–1081. (doi:10.1007/s10592-009-9952-7) - DOI
-
- Uetz P. 2015. The Reptile Database. See http://www.reptile-database.org (accessed 14 August 2015).
-
- Meiri S. 2008. Evolution and ecology of lizard body sizes. Glob. Ecol. Biogeogr. 17, 724–734. (doi:10.1111/j.1466-8238.2008.00414.x) - DOI
-
- Grigoriev DV. 2014. Giant Mosasaurus hoffmannii (Squamata, Mossauridae) from the Late Cretaceous (Maastrichtian) of Panza, Russia. Proc. Zool. Inst. RAS 318, 148–167.
Associated data
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
