Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jul 1:167:229-238.
doi: 10.1016/j.colsurfb.2018.04.016. Epub 2018 Apr 5.

A QCM-D study of the concentration- and time-dependent interactions of human LL37 with model mammalian lipid bilayers

Affiliations

A QCM-D study of the concentration- and time-dependent interactions of human LL37 with model mammalian lipid bilayers

Lindsay D Lozeau et al. Colloids Surf B Biointerfaces. .

Abstract

The human antimicrobial peptide LL37 is promising as an alternative to antibiotics due to its biophysical interactions with charged bacterial lipids. However, its clinical potential is limited due to its interactions with zwitterionic mammalian lipids leading to cytotoxicity. Mechanistic insight into the LL37 interactions with mammalian lipids may enable rational design of less toxic LL37-based therapeutics. To this end, we studied concentration- and time-dependent interactions of LL37 with zwitterionic model phosphatidylcholine (PC) bilayers with quartz crystal microbalance with dissipation (QCM-D). LL37 mass adsorption and PC bilayer viscoelasticity changes were monitored by measuring changes in frequency (Δf) and dissipation (ΔD), respectively. The Voigt-Kelvin viscoelastic model was applied to Δf and ΔD to study changes in bilayer thickness and density with LL37 concentration. At low concentrations (0.10-1.00 μM), LL37 adsorbed onto bilayers in a concentration-dependent manner. Further analyses of Δf, ΔD and thickness revealed that peptide saturation on the bilayers was a threshold for interactions observed above 2.00 μM, interactions that were rapid, multi-step, and reached equilibrium in a concentration- and time-dependent manner. Based on these data, we proposed a model of stable transmembrane pore formation at 2.00-10.0 μM, or transition from a primarily lipid to a primarily protein film with a transmembrane pore formation intermediate state at concentrations of LL37 > 10 μM. The concentration-dependent interactions between LL37 and PC bilayers correlated with the observed concentration-dependent biological activities of LL37 (antimicrobial, immunomodulatory and non-cytotoxic at 0.1-1.0 μM, hemolytic and some cytotoxicity at 2.0-13 μM and cytotoxic at >13 μM).

Keywords: Antimicrobial peptide; Cathelicidin LL37; Peptide-bilayer interactions; Quartz crystal microbalance with dissipation; Voigt-Kelvin Model.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources