The clinical isolation rate of multidrug-resistant or pan-resistant Acinetobacter baumannii (A. baumannii) is increasing, resulting that optional antibiotics are very limited in clinical practice. To deal with such a dilemma in treatment, the development of effective vaccines serves as a good strategy. Outer membrane proteins (Omp) often contain potential excellent vaccine antigens, and NCBI has published >300 Omp sequences of A. baumannii (including the duplicates). To accurately screen out the potential excellent antigen molecules from a large number of sequences, and avoid repetitive experimental processes is of great significance. In this study, we used the bioinformatics software to give extensive predictions of TolB protein. Results suggest it is a potential vaccine antigen. We then cloned the TolB gene fragments and confirmed it was highly conserved among the strains. Finally, we designed a good recombinant epitopes and conducted experimental verification. These findings provided grounds for animal immunology experiments in the future, and showed an orientation for the efficient development of A. baumannii vaccine.
Keywords: Acinetobacter baumannii; B cell epitope; Bioinformatics; T cell epitope; TolB.
Copyright © 2018 Elsevier B.V. All rights reserved.