Should fluid dynamics be included in computer models of RF cardiac ablation by irrigated-tip electrodes?

Biomed Eng Online. 2018 Apr 20;17(1):43. doi: 10.1186/s12938-018-0475-7.

Abstract

Background: Although accurate modeling of the thermal performance of irrigated-tip electrodes in radiofrequency cardiac ablation requires the solution of a triple coupled problem involving simultaneous electrical conduction, heat transfer, and fluid dynamics, in certain cases it is difficult to combine the software with the expertise necessary to solve these coupled problems, so that reduced models have to be considered. We here focus on a reduced model which avoids the fluid dynamics problem by setting a constant temperature at the electrode tip. Our aim was to compare the reduced and full models in terms of predicting lesion dimensions and the temperatures reached in tissue and blood.

Results: The results showed that the reduced model overestimates the lesion surface width by up to 5 mm (i.e. 70%) for any electrode insertion depth and blood flow rate. Likewise, it drastically overestimates the maximum blood temperature by more than 15 °C in all cases. However, the reduced model is able to predict lesion depth reasonably well (within 0.1 mm of the full model), and also the maximum tissue temperature (difference always less than 3 °C). These results were valid throughout the entire ablation time (60 s) and regardless of blood flow rate and electrode insertion depth (ranging from 0.5 to 1.5 mm).

Conclusions: The findings suggest that the reduced model is not able to predict either the lesion surface width or the maximum temperature reached in the blood, and so would not be suitable for the study of issues related to blood temperature, such as the incidence of thrombus formation during ablation. However, it could be used to study issues related to maximum tissue temperature, such as the steam pop phenomenon.

Keywords: Blood flow; Cardiac ablation; Computer model; Irrigated electrode; Radiofrequency ablation; Thermal modeling.

MeSH terms

  • Catheter Ablation / instrumentation*
  • Computer Simulation*
  • Electricity
  • Electrodes
  • Hemodynamics
  • Hydrodynamics*
  • Temperature