Spectrum Control through Discrete Frequency Diffraction in the Presence of Photonic Gauge Potentials

Phys Rev Lett. 2018 Mar 30;120(13):133901. doi: 10.1103/PhysRevLett.120.133901.

Abstract

By using optical phase modulators in a fiber-optical circuit, we theoretically and experimentally demonstrate large control over the spectrum of an impinging signal, which may evolve analogously to discrete diffraction in spatial waveguide arrays. The modulation phase acts as a photonic gauge potential in the frequency dimension, realizing efficient control of the central frequency and bandwidth of frequency combs. We experimentally achieve a 50 GHz frequency shift and threefold bandwidth expansion of an impinging comb, as well as the frequency analogue of various refraction phenomena, including negative refraction and perfect focusing in the frequency domain, both for discrete and continuous incident spectra. Our study paves a promising way towards versatile frequency management for optical communications and signal processing using time modulation schemes.