Improved score statistics for meta-analysis in single-variant and gene-level association studies

Genet Epidemiol. 2018 Jun;42(4):333-343. doi: 10.1002/gepi.22123. Epub 2018 Apr 25.

Abstract

Meta-analysis is now an essential tool for genetic association studies, allowing them to combine large studies and greatly accelerating the pace of genetic discovery. Although the standard meta-analysis methods perform equivalently as the more cumbersome joint analysis under ideal settings, they result in substantial power loss under unbalanced settings with various case-control ratios. Here, we investigate the power loss problem by the standard meta-analysis methods for unbalanced studies, and further propose novel meta-analysis methods performing equivalently to the joint analysis under both balanced and unbalanced settings. We derive improved meta-score-statistics that can accurately approximate the joint-score-statistics with combined individual-level data, for both linear and logistic regression models, with and without covariates. In addition, we propose a novel approach to adjust for population stratification by correcting for known population structures through minor allele frequencies. In the simulated gene-level association studies under unbalanced settings, our method recovered up to 85% power loss caused by the standard methods. We further showed the power gain of our methods in gene-level tests with 26 unbalanced studies of age-related macular degeneration . In addition, we took the meta-analysis of three unbalanced studies of type 2 diabetes as an example to discuss the challenges of meta-analyzing multi-ethnic samples. In summary, our improved meta-score-statistics with corrections for population stratification can be used to construct both single-variant and gene-level association studies, providing a useful framework for ensuring well-powered, convenient, cross-study analyses.

Keywords: meta-analysis; multi-ethnic studies; population stratification; score statistics; unbalanced studies.

Publication types

  • Meta-Analysis
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Case-Control Studies
  • Computer Simulation
  • Diabetes Mellitus, Type 2 / genetics
  • Gene Frequency / genetics
  • Genetic Association Studies*
  • Genetic Variation*
  • Genome-Wide Association Study
  • Humans
  • Logistic Models
  • Models, Genetic
  • Statistics as Topic*