Multiple myeloma (MM) is a treatable, but incurable, malignancy of plasma cells (PC) in the bone marrow (BM). It represents the final stage in a continuum of PC dyscrasias and is consistently preceded by a premalignant phase termed monoclonal gammopathy of undetermined significance (MGUS). The existence of this well-defined premalignant phase provides the opportunity to study clonal evolution of a premalignant condition into overt cancer. Unraveling the mechanisms of malignant transformation of PC could enable early identification of MGUS patients at high risk of progression and may point to novel therapeutic targets, thereby possibly delaying or preventing malignant transformation. The MGUS-to-MM progression requires multiple genomic events and the establishment of a permissive BM microenvironment, although it is generally not clear if the various microenvironmental events are causes or consequences of disease progression. Advances in gene-sequencing techniques and the use of serial paired analyses have allowed for a more specific identification of driver lesions. The challenge in cancer biology is to identify and target those lesions that confer selective advantage and thereby drive evolution of a premalignant clone. Here, we review recent advances in the understanding of malignant transformation of MGUS to MM. Cancer Res; 78(10); 2449-56. ©2018 AACR.
©2018 American Association for Cancer Research.