Experimental Directory Structure (Exdir): An Alternative to HDF5 Without Introducing a New File Format

Front Neuroinform. 2018 Apr 13;12:16. doi: 10.3389/fninf.2018.00016. eCollection 2018.

Abstract

Natural sciences generate an increasing amount of data in a wide range of formats developed by different research groups and commercial companies. At the same time there is a growing desire to share data along with publications in order to enable reproducible research. Open formats have publicly available specifications which facilitate data sharing and reproducible research. Hierarchical Data Format 5 (HDF5) is a popular open format widely used in neuroscience, often as a foundation for other, more specialized formats. However, drawbacks related to HDF5's complex specification have initiated a discussion for an improved replacement. We propose a novel alternative, the Experimental Directory Structure (Exdir), an open specification for data storage in experimental pipelines which amends drawbacks associated with HDF5 while retaining its advantages. HDF5 stores data and metadata in a hierarchy within a complex binary file which, among other things, is not human-readable, not optimal for version control systems, and lacks support for easy access to raw data from external applications. Exdir, on the other hand, uses file system directories to represent the hierarchy, with metadata stored in human-readable YAML files, datasets stored in binary NumPy files, and raw data stored directly in subdirectories. Furthermore, storing data in multiple files makes it easier to track for version control systems. Exdir is not a file format in itself, but a specification for organizing files in a directory structure. Exdir uses the same abstractions as HDF5 and is compatible with the HDF5 Abstract Data Model. Several research groups are already using data stored in a directory hierarchy as an alternative to HDF5, but no common standard exists. This complicates and limits the opportunity for data sharing and development of common tools for reading, writing, and analyzing data. Exdir facilitates improved data storage, data sharing, reproducible research, and novel insight from interdisciplinary collaboration. With the publication of Exdir, we invite the scientific community to join the development to create an open specification that will serve as many needs as possible and as a foundation for open access to and exchange of data.

Keywords: Python; analysis; data management; data storage; file format.