Mechanism of action of the selective tumor radiosensitizer nicotinamide

Int J Radiat Oncol Biol Phys. 1988 Sep;15(3):685-90. doi: 10.1016/0360-3016(88)90312-4.


Nicotinamide has been shown to selectively enhance the radiation damage of tumors in preference to normal tissues. Our present study was an investigation into the mechanism responsible for this effect in the SCCVII/St tumor model grown on the backs of C3H/km mice. A large single injection of nicotinamide (1000 mg/kg), given intraperitoneally 60 minutes before whole body irradiation, significantly enhanced the radiation response of SCCVII tumors as measured by an in vivo/in vitro excision assay performed 24 hr following irradiation. It also gave rise to an almost 4-fold reduction in the binding of 14C-misonidazole, injected 1 hr after the nicotinamide and measured by scintillation counting of excised tumor material 24 hr later. This suggested that nicotinamide was decreasing the degree of tumor hypoxia. Attempts were made to correlate these results with nicotinamide-induced changes in tumor blood flow using the techniques of 133Xe clearance, 86RbCl extraction and Hoechst 33342 fluorescent labelling. Nicotinamide produced between a 30-40% increase in mean tumor cell fluorescence of Hoechst 33342, which was consistent with an increase in tumor blood flow. A similar response was obtained using the uptake of 86RbCl as the end point. However, no statistically significant difference was seen between the tumor blood flow of control and nicotinamide treated mice using the 133Xe clearance procedure. These results are discussed with respect to their clinical implications.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cell Survival
  • Female
  • Mice
  • Mice, Inbred C3H
  • Neoplasms, Experimental / blood supply
  • Neoplasms, Experimental / radiotherapy*
  • Niacinamide / pharmacology*
  • Radiation-Sensitizing Agents*
  • Whole-Body Irradiation


  • Radiation-Sensitizing Agents
  • Niacinamide