Generating a three-dimensional hollow spot with sub-diffraction transverse size by a focused cylindrical vector wave

Opt Express. 2018 Apr 2;26(7):7866-7875. doi: 10.1364/OE.26.007866.

Abstract

A three-dimensional (3D) hollow spot is of great interest for a wide variety of applications such as microscopy, lithography, data storage, optical manipulation, and optical manufacturing. Based on conventional high-numerical-aperture objective lenses, various methods have been proposed for the generation of 3D hollow spots for different polarizations. However, conventional optics are bulky, costly, and difficult to integrate. More importantly, they are diffraction-limited in nature. Owing to their unique properties of small size, light weight, and ease of integration, planar lenses have become attractive as components in the development of novel optical devices. Utilizing the concept of super-oscillation, planar lenses have already shown great potential in the generation of sub-diffraction, or even of super-oscillatory features, in propagating optical waves. In this paper, we propose a binary-phase planar lens with an ultra-long focal length (300λ) for the generation of a 3D hollow spot with a cylindrical vector wave. In addition, we experimentally demonstrate the formation of such a hollow spot with a sub-diffraction transverse size of 0.546λ (smaller than the diffraction limit of 0.5λ/NA, where NA denotes the lens numerical aperture) and a longitudinal size of 1.585λ. The ratio of central minimum intensity to the central ring peak intensity is less than 3.7%. Such a planar lens provides a promising way to achieve tight 3D optical confinement for different uses that might find applications in super-resolution microscopy, nano-lithography, high-density data storage, nano-particle optical manipulation, and nano-optical manufacturing.