Bruno-3 regulates sarcomere component expression and contributes to muscle phenotypes of myotonic dystrophy type 1
- PMID: 29716962
- PMCID: PMC5992612
- DOI: 10.1242/dmm.031849
Bruno-3 regulates sarcomere component expression and contributes to muscle phenotypes of myotonic dystrophy type 1
Abstract
Steinert disease, or myotonic dystrophy type 1 (DM1), is a multisystemic disorder caused by toxic noncoding CUG repeat transcripts, leading to altered levels of two RNA binding factors, MBNL1 and CELF1. The contribution of CELF1 to DM1 phenotypes is controversial. Here, we show that the Drosophila CELF1 family member, Bru-3, contributes to pathogenic muscle defects observed in a Drosophila model of DM1. Bru-3 displays predominantly cytoplasmic expression in muscles and its muscle-specific overexpression causes a range of phenotypes also observed in the fly DM1 model, including affected motility, fiber splitting, reduced myofiber length and altered myoblast fusion. Interestingly, comparative genome-wide transcriptomic analyses revealed that Bru-3 negatively regulates levels of mRNAs encoding a set of sarcomere components, including Actn transcripts. Conversely, it acts as a positive regulator of Actn translation. As CELF1 displays predominantly cytoplasmic expression in differentiating C2C12 myotubes and binds to Actn mRNA, we hypothesize that it might exert analogous functions in vertebrate muscles. Altogether, we propose that cytoplasmic Bru-3 contributes to DM1 pathogenesis in a Drosophila model by regulating sarcomeric transcripts and protein levels.
Keywords: Bruno-3; CELF1; Drosophila; Myotonic dystrophy type 1; RNA CLIP; mRNA stability.
© 2018. Published by The Company of Biologists Ltd.
Conflict of interest statement
Competing interestsThe authors declare no competing or financial interests.
Figures
Similar articles
-
Muscleblind, BSF and TBPH are mislocalized in the muscle sarcomere of a Drosophila myotonic dystrophy model.Dis Model Mech. 2013 Jan;6(1):184-96. doi: 10.1242/dmm.009563. Epub 2012 Nov 1. Dis Model Mech. 2013. PMID: 23118342 Free PMC article.
-
MBNL1 and CUGBP1 modify expanded CUG-induced toxicity in a Drosophila model of myotonic dystrophy type 1.Hum Mol Genet. 2006 Jul 1;15(13):2138-45. doi: 10.1093/hmg/ddl137. Epub 2006 May 24. Hum Mol Genet. 2006. PMID: 16723374
-
In silico discovery of substituted pyrido[2,3-d]pyrimidines and pentamidine-like compounds with biological activity in myotonic dystrophy models.PLoS One. 2017 Jun 5;12(6):e0178931. doi: 10.1371/journal.pone.0178931. eCollection 2017. PLoS One. 2017. PMID: 28582438 Free PMC article.
-
The hallmarks of myotonic dystrophy type 1 muscle dysfunction.Biol Rev Camb Philos Soc. 2021 Apr;96(2):716-730. doi: 10.1111/brv.12674. Epub 2020 Dec 2. Biol Rev Camb Philos Soc. 2021. PMID: 33269537 Review.
-
Myotonic dystrophy: RNA-mediated muscle disease.Curr Opin Neurol. 2007 Oct;20(5):572-6. doi: 10.1097/WCO.0b013e3282ef6064. Curr Opin Neurol. 2007. PMID: 17885447 Review.
Cited by
-
Identification of a pathogenic mutation in ATP2A1 via in silico analysis of exome data for cryptic aberrant splice sites.Mol Genet Genomic Med. 2019 Mar;7(3):e552. doi: 10.1002/mgg3.552. Epub 2019 Jan 28. Mol Genet Genomic Med. 2019. PMID: 30688039 Free PMC article.
-
Monitoring the maturation of the sarcomere network: a super-resolution microscopy-based approach.Cell Mol Life Sci. 2022 Feb 23;79(3):149. doi: 10.1007/s00018-022-04196-3. Cell Mol Life Sci. 2022. PMID: 35199227 Free PMC article.
-
Musashi-2 contributes to myotonic dystrophy muscle dysfunction by promoting excessive autophagy through miR-7 biogenesis repression.Mol Ther Nucleic Acids. 2021 Aug 19;25:652-667. doi: 10.1016/j.omtn.2021.08.010. eCollection 2021 Sep 3. Mol Ther Nucleic Acids. 2021. PMID: 34589284 Free PMC article.
-
Identification of sex-biased and neurodevelopment genes via brain transcriptome in Ostrinia furnacalis.Front Physiol. 2022 Aug 8;13:953538. doi: 10.3389/fphys.2022.953538. eCollection 2022. Front Physiol. 2022. PMID: 36003649 Free PMC article.
-
Deregulations of miR-1 and its target Multiplexin promote dilated cardiomyopathy associated with myotonic dystrophy type 1.EMBO Rep. 2023 Apr 5;24(4):e56616. doi: 10.15252/embr.202256616. Epub 2023 Feb 28. EMBO Rep. 2023. PMID: 36852954 Free PMC article.
References
-
- Anant S., Henderson J. O., Mukhopadhyay D., Navaratnam N., Kennedy S., Min J. and Davidson N. O. (2001). Novel role for RNA-binding protein CUGBP2 in mammalian RNA editing. CUGBP2 modulates C to U editing of apolipoprotein B mRNA by interacting with apobec-1 and ACF, the apobec-1 complementation factor. J. Biol. Chem. 276, 47338-47351. 10.1074/jbc.M104911200 - DOI - PubMed
-
- Blech-Hermoni Y., Sullivan C. B., Jenkins M. W., Wessely O. and Ladd A. N. (2016). CUG-BP, Elav-like family member 1 (CELF1) is required for normal myofibrillogenesis, morphogenesis, and contractile function in the embryonic heart. Dev. Dyn. Off. Publ. Am. Assoc. Anat. 245, 854-873. 10.1002/dvdy.24413 - DOI - PMC - PubMed
-
- Brook J. D., McCurrach M. E., Harley H. G., Buckler A. J., Church D., Aburatani H., Hunter K., Stanton V. P., Thirion J. P. and Hudson T. (1992). Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 69, 385 10.1016/0092-8674(92)90154-5 - DOI - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
