Ketamine Alters Hippocampal Cell Proliferation and Improves Learning in Mice after Traumatic Brain Injury

Anesthesiology. 2018 Aug;129(2):278-295. doi: 10.1097/ALN.0000000000002197.

Abstract

What we already know about this topic: WHAT THIS ARTICLE TELLS US THAT IS NEW: BACKGROUND:: Traumatic brain injury induces cellular proliferation in the hippocampus, which generates new neurons and glial cells during recovery. This process is regulated by N-methyl-D-aspartate-type glutamate receptors, which are inhibited by ketamine. The authors hypothesized that ketamine treatment after traumatic brain injury would reduce hippocampal cell proliferation, leading to worse behavioral outcomes in mice.

Methods: Traumatic brain injury was induced in mice using a controlled cortical impact injury, after which mice (N = 118) received either ketamine or vehicle systemically for 1 week. The authors utilized immunohistochemical assays to evaluate neuronal, astroglial, and microglial cell proliferation and survival 3 days, 2 weeks, and 6 weeks postintervention. The Morris water maze reversal task was used to assess cognitive recovery.

Results: Ketamine dramatically increased microglial proliferation in the granule cell layer of the hippocampus 3 days after injury (injury + vehicle, 2,800 ± 2,700 cells/mm, n = 4; injury + ketamine, 11,200 ± 6,600 cells/mm, n = 6; P = 0.012). Ketamine treatment also prevented the production of astrocytes 2 weeks after injury (sham + vehicle, 2,400 ± 3,200 cells/mm, n = 13; injury + vehicle, 10,500 ± 11,300 cells/mm, n = 12; P = 0.013 vs. sham + vehicle; sham + ketamine, 3,500 ± 4,900 cells/mm, n = 14; injury + ketamine, 4,800 ± 3,000 cells/mm, n = 13; P = 0.955 vs. sham + ketamine). Independent of injury, ketamine temporarily reduced neurogenesis (vehicle-exposed, 105,100 ± 66,700, cells/mm, n = 25; ketamine-exposed, 74,300 ± 29,200 cells/mm, n = 27; P = 0.031). Ketamine administration improved performance in the Morris water maze reversal test after injury, but had no effect on performance in sham-treated mice.

Conclusions: Ketamine alters hippocampal cell proliferation after traumatic brain injury. Surprisingly, these changes were associated with improvement in a neurogenesis-related behavioral recall task, suggesting a possible benefit from ketamine administration after traumatic brain injury in mice. Future studies are needed to determine generalizability and mechanism.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Brain Injuries, Traumatic / drug therapy*
  • Brain Injuries, Traumatic / pathology
  • Cell Proliferation / drug effects*
  • Cell Proliferation / physiology
  • Excitatory Amino Acid Antagonists / pharmacology
  • Excitatory Amino Acid Antagonists / therapeutic use*
  • Female
  • Hippocampus / drug effects*
  • Hippocampus / pathology
  • Hippocampus / physiology
  • Ketamine / pharmacology
  • Ketamine / therapeutic use*
  • Male
  • Maze Learning / drug effects*
  • Maze Learning / physiology
  • Mice
  • Mice, Inbred C57BL
  • Neurogenesis / drug effects
  • Neurogenesis / physiology

Substances

  • Excitatory Amino Acid Antagonists
  • Ketamine