Metabolites Identified during Varied Doses of Aspergillus Species in Zea mays Grains, and Their Correlation with Aflatoxin Levels

Toxins (Basel). 2018 May 7;10(5):187. doi: 10.3390/toxins10050187.

Abstract

Aflatoxin contamination is associated with the development of aflatoxigenic fungi such as Aspergillus flavus and A. parasiticus on food grains. This study was aimed at investigating metabolites produced during fungal development on maize and their correlation with aflatoxin levels. Maize cobs were harvested at R3 (milk), R4 (dough), and R5 (dent) stages of maturity. Individual kernels were inoculated in petri dishes with four doses of fungal spores. Fungal colonisation, metabolite profile, and aflatoxin levels were examined. Grain colonisation decreased with kernel maturity: milk-, dough-, and dent-stage kernels by approximately 100%, 60%, and 30% respectively. Aflatoxin levels increased with dose at dough and dent stages. Polar metabolites including alanine, proline, serine, valine, inositol, iso-leucine, sucrose, fructose, trehalose, turanose, mannitol, glycerol, arabitol, inositol, myo-inositol, and some intermediates of the tricarboxylic acid cycle (TCA—also known as citric acid or Krebs cycle) were important for dose classification. Important non-polar metabolites included arachidic, palmitic, stearic, 3,4-xylylic, and margaric acids. Aflatoxin levels correlated with levels of several polar metabolites. The strongest positive and negative correlations were with arabitol (R = 0.48) and turanose and (R = −0.53), respectively. Several metabolites were interconnected with the TCA; interconnections of the metabolites with the TCA cycle varied depending upon the grain maturity.

Keywords: Aspergillus parasiticus; Zea mays; aflatoxin; metabolite; metabolomics.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aflatoxins / analysis*
  • Amino Acids / metabolism*
  • Aspergillus / metabolism*
  • Edible Grain / chemistry*
  • Edible Grain / microbiology
  • Sugars / metabolism*
  • Zea mays / chemistry*
  • Zea mays / microbiology

Substances

  • Aflatoxins
  • Amino Acids
  • Sugars