Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Apr;13(2):564-576.
doi: 10.1007/s11682-018-9884-2.

Trait and state patterns of basolateral amygdala connectivity at rest are related to endogenous testosterone and aggression in healthy young women

Affiliations

Trait and state patterns of basolateral amygdala connectivity at rest are related to endogenous testosterone and aggression in healthy young women

Macià Buades-Rotger et al. Brain Imaging Behav. 2019 Apr.

Abstract

The steroid hormone testosterone (T) has been suggested to influence reactive aggression upon its action on the basolateral amygdala (BLA), a key brain region for threat detection. However, it is unclear whether T modulates resting-state functional connectivity (rsFC) of the BLA, and whether this predicts subsequent aggressive behavior. Aggressive interactions themselves, which often induce changes in T concentrations, could further alter BLA rsFC, but this too remains untested. Here we investigated the effect of endogenous T on rsFC of the BLA at baseline as well as after an aggressive encounter, and whether this was related to behavioral aggression in healthy young women (n = 39). Pre-scan T was negatively correlated with basal rsFC between BLA and left superior temporal gyrus (STG; p < .001, p < .05 Family-Wise Error [FWE] cluster-level corrected), which in turn was associated with increased aggression (r = .37, p = .020). BLA-STG coupling at rest might thus underlie hostile readiness in low-T women. In addition, connectivity between the BLA and the right superior parietal lobule (SPL), a brain region involved in higher-order perceptual processes, was reduced in aggressive participants (p < .001, p < .05 FWE cluster-level corrected). On the other hand, post-task increases in rsFC between BLA and medial orbitofrontal cortex (mOFC) were linked to reduced aggression (r = -.36, p = .023), consistent with the established notion that the mOFC regulates amygdala activity in order to curb aggressive impulses. Finally, competition-induced changes in T were associated with increased coupling between the BLA and the right lateral OFC (p < .001, p < .05 FWE cluster-level corrected), but this effect was unrelated to aggression. We thus identified connectivity patterns that prospectively predict aggression in women, and showed how aggressive interactions in turn impact these neural systems.

Keywords: Aggression; Amygdala; Resting-state functional connectivity; Testosterone.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources