Mitral annuloplasty ring flexibility preferentially reduces posterior suture forces

J Biomech. 2018 Jun 25:75:58-66. doi: 10.1016/j.jbiomech.2018.04.043. Epub 2018 May 3.

Abstract

Annuloplasty ring repair is a common procedure for the correction of mitral valve regurgitation. Commercially available rings vary in dimensions and material properties. Annuloplasty ring suture dehiscence from the native annulus is a catastrophic yet poorly understood phenomenon that has been reported across ring types. Recognizing that sutures typically dehisce from the structurally weaker posterior annulus, our group is conducting a multi-part study in search of ring design parameters that influence forces acting on posterior annular sutures in the beating heart. Herein, we report the effect of ring rigidity on suture forces. Measurements utilized custom force sensors, attached to annuloplasty rings and implanted in normal ovine subjects via standard surgical procedure. Tested rings included the semi-rigid Physio (Edwards Lifesciences) and rigid and flexible prototypes of matching geometry. While no significant differences due to ring stiffness existed for sutures in the anterior region, posterior forces were significantly reduced with use of the flexible ring (rigid: 1.95 ± 0.96 N, semi-rigid: 1.76 ± 1.19 N, flexible: 1.04 ± 0.63 N; p < 0.001). The ratio of anterior to posterior FC scaled positively with increasing flexibility (p < 0.001), and posterior forces took more time to reach their peak load when a flexible ring was used (p < 0.001). This suggests a more rigid ring enables more rapid/complete force equilibration around the suture network, transferring higher anterior forces to the weaker posterior tissue. For mitral annuloplasties requiring ring rigidity, we propose a ring design concept to potentially disrupt this force transfer and improve suture retention.

Keywords: Annuloplasty; Device design; Heart valve; Mitral; Suture dehiscence.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Heart Valve Prosthesis Implantation*
  • Heart Valve Prosthesis*
  • Mitral Valve Annuloplasty*
  • Mitral Valve Insufficiency*
  • Postoperative Complications
  • Prosthesis Design
  • Sheep
  • Sutures*