Autologous tumor cells/bacillus Calmette-Guérin/formalin-based novel breast cancer vaccine induces an immune antitumor response

Oncotarget. 2018 Apr 17;9(29):20222-20238. doi: 10.18632/oncotarget.25044.

Abstract

Autologous cancer cell vaccines represent a multivalent patient-specific treatment. Studies have demonstrated that these immunotherapies should be combined with immunomodulators to improve results. We tested in breast cancer the antitumor effects of a 200 µg autologous tumor cells homogenate combined with 0.0625 mg of bacillus Calmette-Guérin (BCG), and 0.02% formalin. We used a 4T1 murine model of BALB/c receiving four weekly injections of either this vaccine or control treatments. The control treatments were either Phosphate Buffer Saline, BCG treated with formalin, or the tumor cells homogenate plus BCG alone. We found that mice treated with the vaccine had the lowest tumor growth rate and mitosis percentage. The vaccinated group also showed a marked increase in infiltration of antitumor cells (natural killer, CD8 + T and CD4+ Th1 cells), as well as a decrease of myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs). Additionally, we also observed a possible activation of the immune memory response as indicated by plasma cell tumor infiltration. Our results demonstrate that our proposed breast cancer vaccine induces a potent antitumor effect in 4T1 tumor-bearing mice. Its effectiveness, low cost and simple preparation method, makes it a promising treatment candidate for personalized breast cancer immunotherapy.

Keywords: BCG; Immunology; autologous tumor cells vaccine; breast cancer; cancer immunotherapy; formalin.