Mitochondrial protein sulfenation during aging in the rat brain

Biophys Rep. 2018;4(2):104-113. doi: 10.1007/s41048-018-0053-3. Epub 2018 Apr 19.

Abstract

There is accumulating evidence that cysteine sulfenation (cys-SOH) in proteins plays an important role in cellular response to oxidative stress. The purpose of the present study was to identify mitochondrial proteins that undergo changes in cys-SOH during aging. Studies were conducted in rats when they were 5 or 30 months of age. Following blocking of free protein thiols with N-ethylmaleimide, protein sulfenic acids were reduced by arsenite to free thiol groups that were subsequently labeled with biotin-maleimide. Samples were then comparatively analyzed by two-dimensional Western blots, and proteins showing changes in sulfenation were selectively identified by mass spectrometry peptide sequencing. As a result, five proteins were identified. Proteins showing an age-related decrease in sulfenation include pyruvate carboxylase and pyruvate dehydrogenase; while those showing an age-related increase in sulfenation include aconitase, mitofilin, and tubulin (α-1). Results of the present study provide a general picture of mitochondrial protein sulfenation in brain oxidative stress and implicate the involvement of protein sulfenation in overall decline of mitochondrial function during brain aging.

Keywords: Brain aging; Mitochondria; Oxidative stress; Sulfenation; Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE).