Changes in soil nitrogen dynamics caused by prescribed fires in dense gorse lands in SW Pyrenees

Sci Total Environ. 2018 Oct 15:639:175-185. doi: 10.1016/j.scitotenv.2018.05.139. Epub 2018 May 18.

Abstract

Rural depopulation, abandonment of traditional land uses and decrease of extensive stockfarming is accelerating shrub encroachment in mountain areas. In NW Spain, gorse (Ulex gallii Planch.) is expanding, developing dense shrublands that accumulate high fuel-loads, ignite easily and persist during long periods as alternate stable states. Under this scenario, traditional bush-to-bush farming fires are being replaced by high fuel-load burnings performed by specialised teams to reduce fuels and promote mosaic landscapes. This research analyses the effects on soil function and nitrogen (N)-cycling of these new generation of prescribed fires practiced under similar conditions to traditional fires (winter time, moist soils), but differing in the biomass and the continuity of the surface burnt. The results showed significant changes in N-cycle parameters, such as increases in inorganic N and dissolved organic nitrogen (DON), but declines in N microbial biomass and urease activity. At the ecosystem level, potential N losses were high because the pulse of water-soluble forms, DON and nitrate, following fire overlaps with periods of low biological N retention by microorganisms and plants. Although most effects were similar to those observed in traditional burnings done in the same region, the primary concern is the high potential for DON losses following prescribed burning in highly gorse-encroached areas. In N-limited ecosystems, a crucial issue is to attain an equilibrium between frequent burnings, which may prevent an optimal recovery of the soil function, and uneven burnings, which burn high amounts of accumulated fuel and increase the risk of removing large quantities of dissolved N from the ecosystem in a unique fire event. Overall, the use of different techniques combined with fire are needed to promote and consolidate desired changes in dense gorse lands.

Keywords: Controlled burnings; Dissolved organic N; Nitrate; Shrub encroachment; Soil N-cycle; Ulex gallii.