Microtubule Dynamics Scale with Cell Size to Set Spindle Length and Assembly Timing
- PMID: 29787710
- PMCID: PMC6360954
- DOI: 10.1016/j.devcel.2018.04.022
Microtubule Dynamics Scale with Cell Size to Set Spindle Length and Assembly Timing
Abstract
Successive cell divisions during embryonic cleavage create increasingly smaller cells, so intracellular structures must adapt accordingly. Mitotic spindle size correlates with cell size, but the mechanisms for this scaling remain unclear. Using live cell imaging, we analyzed spindle scaling during embryo cleavage in the nematode Caenorhabditis elegans and sea urchin Paracentrotus lividus. We reveal a common scaling mechanism, where the growth rate of spindle microtubules scales with cell volume, which explains spindle shortening. Spindle assembly timing is, however, constant throughout successive divisions. Analyses in silico suggest that controlling the microtubule growth rate is sufficient to scale spindle length and maintain a constant assembly timing. We tested our in silico predictions to demonstrate that modulating cell volume or microtubule growth rate in vivo induces a proportional spindle size change. Our results suggest that scalability of the microtubule growth rate when cell size varies adapts spindle length to cell volume.
Keywords: Caenorhabditis elegans; Paracentrotus lividus; cell division; embryonic development; in silico models; intracellular scaling; microtubule dynamics; microtubules; mitotic spindle; spindle assembly.
Copyright © 2018 Elsevier Inc. All rights reserved.
Conflict of interest statement
DECLARATION OF INTERESTS
The authors declare no competing interests.
Figures
Comment in
-
The Incredible Shrinking Spindle.Dev Cell. 2018 May 21;45(4):421-423. doi: 10.1016/j.devcel.2018.05.007. Dev Cell. 2018. PMID: 29787705
Similar articles
-
Microtubule Feedback and LET-99-Dependent Control of Pulling Forces Ensure Robust Spindle Position.Biophys J. 2018 Dec 4;115(11):2189-2205. doi: 10.1016/j.bpj.2018.10.010. Epub 2018 Oct 19. Biophys J. 2018. PMID: 30447992 Free PMC article.
-
Centrosome size sets mitotic spindle length in Caenorhabditis elegans embryos.Curr Biol. 2010 Feb 23;20(4):353-8. doi: 10.1016/j.cub.2009.12.050. Epub 2010 Feb 4. Curr Biol. 2010. PMID: 20137951
-
Spindle positioning during the asymmetric first cell division of Caenorhabditis elegans embryos.Novartis Found Symp. 2001;237:164-75; discussion 176-81. doi: 10.1002/0470846666.ch13. Novartis Found Symp. 2001. PMID: 11444042 Review.
-
LET-711, the Caenorhabditis elegans NOT1 ortholog, is required for spindle positioning and regulation of microtubule length in embryos.Mol Biol Cell. 2006 Nov;17(11):4911-24. doi: 10.1091/mbc.e06-02-0107. Epub 2006 Sep 13. Mol Biol Cell. 2006. PMID: 16971515 Free PMC article.
-
Physical Limits on the Precision of Mitotic Spindle Positioning by Microtubule Pushing forces: Mechanics of mitotic spindle positioning.Bioessays. 2017 Nov;39(11):10.1002/bies.201700122. doi: 10.1002/bies.201700122. Epub 2017 Sep 28. Bioessays. 2017. PMID: 28960439 Free PMC article. Review.
Cited by
-
A computational model of the early stages of acentriolar meiotic spindle assembly.Mol Biol Cell. 2019 Mar 21;30(7):863-875. doi: 10.1091/mbc.E18-10-0644. Epub 2019 Jan 16. Mol Biol Cell. 2019. PMID: 30650011 Free PMC article.
-
The Perinuclear ER Scales Nuclear Size Independently of Cell Size in Early Embryos.Dev Cell. 2020 Aug 10;54(3):395-409.e7. doi: 10.1016/j.devcel.2020.05.003. Epub 2020 May 29. Dev Cell. 2020. PMID: 32473090 Free PMC article.
-
PLK1- and PLK4-Mediated Asymmetric Mitotic Centrosome Size and Positioning in the Early Zebrafish Embryo.Curr Biol. 2020 Nov 16;30(22):4519-4527.e3. doi: 10.1016/j.cub.2020.08.074. Epub 2020 Sep 10. Curr Biol. 2020. PMID: 32916112 Free PMC article.
-
Chronology of motor-mediated microtubule streaming.Elife. 2019 Jan 2;8:e39694. doi: 10.7554/eLife.39694. Elife. 2019. PMID: 30601119 Free PMC article.
-
Functional midbody assembly in the absence of a central spindle.J Cell Biol. 2022 Mar 7;221(3):e202011085. doi: 10.1083/jcb.202011085. Epub 2022 Jan 7. J Cell Biol. 2022. PMID: 34994802 Free PMC article.
References
-
- Agrell I (1956). A mitotic gradient as the cause of the early differentiation in the sea urchin embryo. Zoological Papers in Honour of B Hanstrom, pp. 27–34.
-
- Andersen SS (2000). Spindle assembly and the art of regulating microtubule dynamics by MAPs and Stathmin/Op18. Trends Cell Biol 10, 261–267. - PubMed
-
- Andersen SS, Ashford AJ, Tournebize R, Gavet O, Sobel A, Hyman AA, and Karsenti E (1997). Mitotic chromatin regulates phosphorylation of Stathmin/Op18. Nature 389, 640–643. - PubMed
-
- Angerer LM, and Angerer RC (2000). Animal-vegetal axis patterning mechanisms in the early sea urchin embryo. Dev Biol 218, 1–12. - PubMed
-
- Belmont LD, Hyman AA, Sawin KE, and Mitchison TJ (1990). Real-time visualization of cell cycle-dependent changes in microtubule dynamics in cytoplasmic extracts. Cell 62, 579–589. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
