ComplexContact: a web server for inter-protein contact prediction using deep learning
- PMID: 29790960
- PMCID: PMC6030867
- DOI: 10.1093/nar/gky420
ComplexContact: a web server for inter-protein contact prediction using deep learning
Abstract
ComplexContact (http://raptorx2.uchicago.edu/ComplexContact/) is a web server for sequence-based interfacial residue-residue contact prediction of a putative protein complex. Interfacial residue-residue contacts are critical for understanding how proteins form complex and interact at residue level. When receiving a pair of protein sequences, ComplexContact first searches for their sequence homologs and builds two paired multiple sequence alignments (MSA), then it applies co-evolution analysis and a CASP-winning deep learning (DL) method to predict interfacial contacts from paired MSAs and visualizes the prediction as an image. The DL method was originally developed for intra-protein contact prediction and performed the best in CASP12. Our large-scale experimental test further shows that ComplexContact greatly outperforms pure co-evolution methods for inter-protein contact prediction, regardless of the species.
Figures
Similar articles
-
A Web-Based Protocol for Interprotein Contact Prediction by Deep Learning.Methods Mol Biol. 2020;2074:67-80. doi: 10.1007/978-1-4939-9873-9_6. Methods Mol Biol. 2020. PMID: 31583631
-
Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.PLoS Comput Biol. 2017 Jan 5;13(1):e1005324. doi: 10.1371/journal.pcbi.1005324. eCollection 2017 Jan. PLoS Comput Biol. 2017. PMID: 28056090 Free PMC article.
-
Analysis of deep learning methods for blind protein contact prediction in CASP12.Proteins. 2018 Mar;86 Suppl 1(Suppl 1):67-77. doi: 10.1002/prot.25377. Epub 2017 Sep 6. Proteins. 2018. PMID: 28845538 Free PMC article.
-
The trRosetta server for fast and accurate protein structure prediction.Nat Protoc. 2021 Dec;16(12):5634-5651. doi: 10.1038/s41596-021-00628-9. Epub 2021 Nov 10. Nat Protoc. 2021. PMID: 34759384 Review.
-
Recent Applications of Deep Learning Methods on Evolution- and Contact-Based Protein Structure Prediction.Int J Mol Sci. 2021 Jun 2;22(11):6032. doi: 10.3390/ijms22116032. Int J Mol Sci. 2021. PMID: 34199677 Free PMC article. Review.
Cited by
-
CoRNeA: A Pipeline to Decrypt the Inter-Protein Interfaces from Amino Acid Sequence Information.Biomolecules. 2020 Jun 22;10(6):938. doi: 10.3390/biom10060938. Biomolecules. 2020. PMID: 32580303 Free PMC article.
-
Selenoprotein W modulates tau homeostasis in an Alzheimer's disease mouse model.Commun Biol. 2024 Jul 17;7(1):872. doi: 10.1038/s42003-024-06572-0. Commun Biol. 2024. PMID: 39020075 Free PMC article.
-
Chasing coevolutionary signals in intrinsically disordered proteins complexes.Sci Rep. 2020 Oct 21;10(1):17962. doi: 10.1038/s41598-020-74791-6. Sci Rep. 2020. PMID: 33087759 Free PMC article.
-
N6-methyladenosine-modified DBT alleviates lipid accumulation and inhibits tumor progression in clear cell renal cell carcinoma through the ANXA2/YAP axis-regulated Hippo pathway.Cancer Commun (Lond). 2023 Apr;43(4):480-502. doi: 10.1002/cac2.12413. Epub 2023 Mar 1. Cancer Commun (Lond). 2023. PMID: 36860124 Free PMC article.
-
InterEvDock3: a combined template-based and free docking server with increased performance through explicit modeling of complex homologs and integration of covariation-based contact maps.Nucleic Acids Res. 2021 Jul 2;49(W1):W277-W284. doi: 10.1093/nar/gkab358. Nucleic Acids Res. 2021. PMID: 33978743 Free PMC article.
References
-
- Lensink M.F., Velankar S., Wodak S.J.. Modeling protein–protein and protein–peptide complexes: CAPRI 6th edition. Proteins: Struct. Funct. Bioinform. 2017; 85:359–377. - PubMed
-
- Mosca R., Céol A., Aloy P.. Interactome3D: adding structural details to protein networks. Nat. Methods. 2013; 10:47. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
