In vitro cell response on CP-Ti surfaces functionalized with TGF-β1 inhibitory peptides

J Mater Sci Mater Med. 2018 May 23;29(6):73. doi: 10.1007/s10856-018-6082-0.

Abstract

Osseointegration of implants is conversely related to the generation of a fibrous tissue capsule around the implant by the host environment. Although TGF-β1 plays many roles in regeneration processes, it is the cytokine to be mostly associated to the production of fibrotic tissue and thus, its inhibition has demonstrated to be beneficial to prevent several fibrotic reactions. Surface biofunctionalization enables the immobilization of biologically active molecules on an implant surface to tailor the biological response of the host. Here, we studied in vitro biological effects of biofunctionalized CP-Ti surfaces with a TGF-β1 inhibitor peptide, P144. A reliable biofunctionalization process that tethers P144 peptides to commercially pure titanium was developed. Differentiation of human mesenchymal stem cells, osteoblasts and fibroblasts on P144-functionalized and control surfaces was assessed at the gene expression and protein production levels. Results showed that P144-functionalized surfaces reduced expression and production of fibrotic differentiation markers and increased osteoblastic differentiation markers. Therefore, biofunctionalization of surfaces with TGF-β1 inhibitor peptides are an alternative promising strategy for inducing osseointegration around medical devices and implants.

MeSH terms

  • Alkaline Phosphatase / metabolism
  • Animals
  • Cell Differentiation
  • Coated Materials, Biocompatible / chemistry*
  • Cytokines / metabolism
  • Fibroblasts / metabolism
  • Humans
  • Materials Testing
  • Mesenchymal Stem Cells / cytology*
  • Mice
  • NIH 3T3 Cells
  • Osteoblasts / cytology
  • Osteoblasts / metabolism
  • Osteocalcin / metabolism
  • Peptides / chemistry*
  • Spectrometry, X-Ray Emission
  • Surface Properties
  • Titanium / chemistry
  • Transforming Growth Factor beta1 / chemistry*

Substances

  • Coated Materials, Biocompatible
  • Cytokines
  • Peptides
  • Transforming Growth Factor beta1
  • Osteocalcin
  • Titanium
  • Alkaline Phosphatase