The genome of an endosymbiotic methanogen is very similar to those of its free-living relatives

Environ Microbiol. 2018 Jul;20(7):2538-2551. doi: 10.1111/1462-2920.14279. Epub 2018 Aug 23.

Abstract

The methanogenic endosymbionts of anaerobic protists represent the only known intracellular archaea, yet, almost nothing is known about genome structure and content in these lineages. Here, an almost complete genome of an intracellular Methanobacterium species was assembled from a metagenome derived from its host ciliate, a Heterometopus species. Phylogenomic analysis showed that the endosymbiont was closely related to free-living Methanobacterium isolates, and when compared with the genomes of free-living Methanobacterium, the endosymbiont did not show significant reduction in genome size or GC content. Additionally, the Methanobacterium endosymbiont genome shared the majority of its genes with its closest relative, though it did also contain unique genes possibly involved in interactions with the host via membrane-associated proteins, the removal of toxic by-products from host metabolism and the production of small signalling molecules. Though anaerobic ciliates have been shown to transmit their endosymbionts to daughter cells during division, the results presented here could suggest that the endosymbiotic Methanobacterium did not experience significant genetic isolation or drift and/or that this lineage was only recently acquired. Altogether, comparative genomic analysis identified genes potentially involved in the establishment and maintenance of the symbiosis, as well provided insight into the genomic consequences for an intracellular archaeum.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Base Composition
  • Ciliophora / microbiology*
  • Euryarchaeota / genetics*
  • Genome, Bacterial*
  • Phylogeny
  • Symbiosis