Fluorescence polarization analysis, lipid composition, and Na+, K+-ATPase kinetics of synaptosomal membranes in feline GM1 and GM2 gangliosidosis

J Neurochem. 1985 Mar;44(3):947-56. doi: 10.1111/j.1471-4159.1985.tb12909.x.

Abstract

Neurochemical studies were performed on synaptosomal membranes from cats with GM1 or GM2 gangliosidosis to examine possible mechanisms of neuronal dysfunction in these disorders. The basic hypothesis tested was that deficient ganglioside catabolism causes increased ganglioside content of synaptosomal plasma membrane which in turn disrupts normal function. Fluidity characteristics of synaptosomal membranes were examined using fluorescence polarization. Results showed markedly reduced membrane fluidity in both GM1 and GM2 gangliosidosis. These results were supported by a second study which revealed that isolated synaptosomal membranes of GM1 gangliosidosis cats had a 24-fold increase in total ganglioside content caused predominantly by excess GM1, a 2.3-fold increased cholesterol content, and a 1.4-fold increased phospholipid content. Finally, kinetic analysis of synaptosomal plasma membrane Na+,K+-ATPase from cats with GM1 gangliosidosis showed negligible differences in kinetic parameters compared with controls. Thus, the enzyme appeared protected from the global membrane changes in fluidity and composition. These observations provide evidence for a pathogenetic mechanism of neuronal dysfunction in the gangliosidoses while demonstrating protection of certain vital functional components, such as Na+,K+-ATPase.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Brain / ultrastructure
  • Cats
  • Cholesterol / analysis
  • Fluorescence Polarization
  • G(M1) Ganglioside
  • G(M2) Ganglioside
  • Gangliosidoses / enzymology*
  • Humans
  • Lipids / analysis*
  • Membrane Fluidity
  • Phospholipids / analysis
  • Sodium-Potassium-Exchanging ATPase / metabolism*
  • Synaptic Membranes / enzymology*
  • Temperature

Substances

  • Lipids
  • Phospholipids
  • G(M2) Ganglioside
  • G(M1) Ganglioside
  • Cholesterol
  • Sodium-Potassium-Exchanging ATPase