Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II
- PMID: 29849146
- PMCID: PMC6475116
- DOI: 10.1038/s41586-018-0174-3
Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II
Abstract
Hyperphosphorylation of the C-terminal domain (CTD) of the RPB1 subunit of human RNA polymerase (Pol) II is essential for transcriptional elongation and mRNA processing1-3. The CTD contains 52 heptapeptide repeats of the consensus sequence YSPTSPS. The highly repetitive nature and abundant possible phosphorylation sites of the CTD exert special constraints on the kinases that catalyse its hyperphosphorylation. Positive transcription elongation factor b (P-TEFb)-which consists of CDK9 and cyclin T1-is known to hyperphosphorylate the CTD and negative elongation factors to stimulate Pol II elongation1,4,5. The sequence determinant on P-TEFb that facilitates this action is currently unknown. Here we identify a histidine-rich domain in cyclin T1 that promotes the hyperphosphorylation of the CTD and stimulation of transcription by CDK9. The histidine-rich domain markedly enhances the binding of P-TEFb to the CTD and functional engagement with target genes in cells. In addition to cyclin T1, at least one other kinase-DYRK1A 6 -also uses a histidine-rich domain to target and hyperphosphorylate the CTD. As a low-complexity domain, the histidine-rich domain also promotes the formation of phase-separated liquid droplets in vitro, and the localization of P-TEFb to nuclear speckles that display dynamic liquid properties and are sensitive to the disruption of weak hydrophobic interactions. The CTD-which in isolation does not phase separate, despite being a low-complexity domain-is trapped within the cyclin T1 droplets, and this process is enhanced upon pre-phosphorylation by CDK7 of transcription initiation factor TFIIH1-3. By using multivalent interactions to create a phase-separated functional compartment, the histidine-rich domain in kinases targets the CTD into this environment to ensure hyperphosphorylation and efficient elongation of Pol II.
Conflict of interest statement
Figures
Comment in
-
Transcription regulation enters a new phase.Nature. 2018 Jun;558(7709):197-198. doi: 10.1038/d41586-018-05244-4. Nature. 2018. PMID: 29895907 No abstract available.
Similar articles
-
Direct evidence that HIV-1 Tat stimulates RNA polymerase II carboxyl-terminal domain hyperphosphorylation during transcriptional elongation.J Mol Biol. 1999 Jul 30;290(5):929-41. doi: 10.1006/jmbi.1999.2933. J Mol Biol. 1999. PMID: 10438593
-
Human and rodent transcription elongation factor P-TEFb: interactions with human immunodeficiency virus type 1 tat and carboxy-terminal domain substrate.J Virol. 1999 Jul;73(7):5448-58. doi: 10.1128/JVI.73.7.5448-5458.1999. J Virol. 1999. PMID: 10364292 Free PMC article.
-
HIV-1 Tat-associated RNA polymerase C-terminal domain kinase, CDK2, phosphorylates CDK7 and stimulates Tat-mediated transcription.Biochem J. 2002 Jun 15;364(Pt 3):649-57. doi: 10.1042/BJ20011191. Biochem J. 2002. PMID: 12049628 Free PMC article.
-
Balanced between order and disorder: a new phase in transcription elongation control and beyond.Transcription. 2019 Jun;10(3):157-163. doi: 10.1080/21541264.2019.1570812. Epub 2019 Jan 31. Transcription. 2019. PMID: 30663929 Free PMC article. Review.
-
P-TEFb: The master regulator of transcription elongation.Mol Cell. 2023 Feb 2;83(3):393-403. doi: 10.1016/j.molcel.2022.12.006. Epub 2023 Jan 3. Mol Cell. 2023. PMID: 36599353 Free PMC article. Review.
Cited by
-
Genome-wide prediction of activating regulatory elements in rice by combining STARR-seq with FACS.Plant Biotechnol J. 2022 Dec;20(12):2284-2297. doi: 10.1111/pbi.13907. Epub 2022 Aug 26. Plant Biotechnol J. 2022. PMID: 36028476 Free PMC article.
-
Advances in Chromatin and Chromosome Research: Perspectives from Multiple Fields.Mol Cell. 2020 Sep 17;79(6):881-901. doi: 10.1016/j.molcel.2020.07.003. Epub 2020 Aug 7. Mol Cell. 2020. PMID: 32768408 Free PMC article. Review.
-
Filamentation and biofilm formation are regulated by the phase-separation capacity of network transcription factors in Candida albicans.PLoS Pathog. 2023 Dec 13;19(12):e1011833. doi: 10.1371/journal.ppat.1011833. eCollection 2023 Dec. PLoS Pathog. 2023. PMID: 38091321 Free PMC article.
-
Multi-phase separation in mitochondrial nucleoids and eukaryotic nuclei.Biophys Rep. 2023 Jun 30;9(3):113-119. doi: 10.52601/bpr.2023.220018. Biophys Rep. 2023. PMID: 38028151 Free PMC article.
-
Liquid-Liquid Phase Separation in Chromatin.Cold Spring Harb Perspect Biol. 2022 Feb 1;14(2):a040683. doi: 10.1101/cshperspect.a040683. Cold Spring Harb Perspect Biol. 2022. PMID: 34127447 Free PMC article. Review.
References
-
- Harlen KM & Churchman LS The code and beyond: transcription regulation by the RNA polymerase II carboxy-terminal domain. Nat.source Rev. Mol. Cell Biol 18, 263–273 (2017). - PubMed
-
- Eick D & Geyer M The RNA polymerase II carboxy-terminal domain (CTD) code. Chem. Rev 113, 8456–8490 (2013). - PubMed
-
- Zaborowska J, Eglo S & Murphy S The pol II CTD: new twists in the tail. Nat. Struct. Mol. Biol 23, 771–777 (2016). - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
Miscellaneous
