Hydrogen Water Drinking Exerts Antifatigue Effects in Chronic Forced Swimming Mice via Antioxidative and Anti-Inflammatory Activities

Biomed Res Int. 2018 Apr 18;2018:2571269. doi: 10.1155/2018/2571269. eCollection 2018.


Purpose: This study was performed to evaluate antifatigue effect of hydrogen water (HW) drinking in chronic forced exercise mice model.

Materials and methods: Twelve-week-old C57BL6 female mice were divided into nonstressed normal control (NC) group and stressed group: (purified water/PW-treated group and HW-treated group). Stressed groups were supplied with PW and HW, respectively, ad libitum and forced to swim for the stress induction every day for 4 consecutive weeks. Gross antifatigue effects of HW were assessed by swimming endurance capacity (once weekly for 4 wk), metabolic activities, and immune-redox activities. Metabolic activities such as blood glucose, lactate, glycogen, blood urea nitrogen (BUN), and lactate dehydrogenase (LDH) as well as immune-redox activities such as reactive oxygen species (ROS), nitric oxide (NO), glutathione peroxidase (GPx), catalase, and the related cytokines were evaluated to elucidate underlying mechanism. Blood glucose and lactate were measured at 0 wk (before swimming) and 4 wk (after swimming).

Results: HW group showed a higher swimming endurance capacity (p < 0.001) than NC and PW groups. Positive metabolic effects in HW group were revealed by the significant reduction of blood glucose, lactate, and BUN in serum after 4 wk (p < 0.01, resp.), as well as the significant increase of liver glycogen (p < 0.001) and serum LDH (p < 0.05) than PW group. In parallel, redox balance was represented by lower NO in serum (p < 0.01) and increased level of GPx in both serum and liver (p < 0.05) than PW group. In line, the decreased levels of serum TNF-α (p < 0.01), IL-6, IL-17, and liver IL-1β (p < 0.05) in HW group revealed positive cytokine profile compared to PW and NC group.

Conclusion: This study shows antifatigue effects of HW drinking in chronic forced swimming mice via metabolic coordination and immune-redox balance. In that context, drinking HW could be applied to the alternative and safety fluid remedy for chronic fatigue control.

MeSH terms

  • Animals
  • Anti-Inflammatory Agents / pharmacology
  • Anti-Inflammatory Agents / therapeutic use*
  • Antioxidants / pharmacology
  • Antioxidants / therapeutic use*
  • Blood Glucose / metabolism
  • Blood Urea Nitrogen
  • Body Weight / drug effects
  • Cytokines / metabolism
  • Drinking Water*
  • Fatigue / blood
  • Fatigue / drug therapy*
  • Female
  • Glycogen / metabolism
  • Hydrogen / pharmacology
  • Hydrogen / therapeutic use*
  • Inflammation Mediators / metabolism
  • L-Lactate Dehydrogenase / metabolism
  • Lactic Acid / blood
  • Mice, Inbred C57BL
  • Nitric Oxide / metabolism
  • Oxidation-Reduction
  • Physical Endurance / drug effects
  • Reactive Oxygen Species / metabolism
  • Swimming*


  • Anti-Inflammatory Agents
  • Antioxidants
  • Blood Glucose
  • Cytokines
  • Drinking Water
  • Inflammation Mediators
  • Reactive Oxygen Species
  • Nitric Oxide
  • Lactic Acid
  • Hydrogen
  • Glycogen
  • L-Lactate Dehydrogenase