Functional coupling networks inferred from prefrontal cortex activity show experience-related effective plasticity

Netw Neurosci. 2017 Oct 1;1(3):275-301. doi: 10.1162/NETN_a_00014.

Abstract

Functional coupling networks are widely used to characterize collective patterns of activity in neural populations. Here, we ask whether functional couplings reflect the subtle changes, such as in physiological interactions, believed to take place during learning. We infer functional network models reproducing the spiking activity of simultaneously recorded neurons in prefrontal cortex (PFC) of rats, during the performance of a cross-modal rule shift task (task epoch), and during preceding and following sleep epochs. A large-scale study of the 96 recorded sessions allows us to detect, in about 20% of sessions, effective plasticity between the sleep epochs. These coupling modifications are correlated with the coupling values in the task epoch, and are supported by a small subset of the recorded neurons, which we identify by means of an automatized procedure. These potentiated groups increase their coativation frequency in the spiking data between the two sleep epochs, and, hence, participate to putative experience-related cell assemblies. Study of the reactivation dynamics of the potentiated groups suggests a possible connection with behavioral learning. Reactivation is largely driven by hippocampal ripple events when the rule is not yet learned, and may be much more autonomous, and presumably sustained by the potentiated PFC network, when learning is consolidated.

Keywords: Cell assemblies; Effective plasticity; Ising model; Memory consolidation; Statistical inference.