Hippocampal activations in mesial temporal lobe epilepsy due to hippocampal sclerosis- an observational study on intramural encoding-delayed recall paradigms using task-based memory fMRI

Epilepsy Res. 2018 Sep:145:31-39. doi: 10.1016/j.eplepsyres.2018.05.012. Epub 2018 May 26.

Abstract

Objectives: To validate concurrent utility of within-scanner encoding and delayed recognition-memory paradigms to ascertain hippocampal activations during task-based memory fMRI.

Methods: Memory paradigms were designed for faces, word-pairs and abstract designs. A deep-encoding task was designed comprising of a total of 9 cycles run within a 1.5T MRI scanner. A recall session was performed after 1 h within the scanner using an event-related design. Group analysis was done with 'correct-incorrect' responses applied as parametric modulators in Statistical Parametric Mapping version 8 using boot-strap method to enable estimation of laterality indices (LI) using custom anatomical masks involving the medio-basal temporal structures.

Results: Twenty seven subjects with drug-resistant mesial temporal lobe epilepsy due to hippocampal sclerosis (MTLE-HS) [17 patients of left-MTLE and 10 patients of right-MTLE] and 21 right handed age-matched healthy controls (HC) were recruited. For the encoding paradigm blood oxygen level dependent (BOLD) responses in HC demonstrated right laterality for faces, left laterality for word pairs, and bilaterality for design encoding over the regions of interest. Both right and left MTLE-HS groups revealed left lateralisation for word-pair encoding, bilateral activation for face encoding, with design encoding in right MTLE-HS demonstrating a left shift. As opposed to lateralization shown in controls, group analysis of cued-recall BOLD signals acquired within scanner in left MTLE-HS demonstrated right lateralization for word-pairs with bilaterality for faces and designs. The right MTLE-HS group demonstrated bilateral activations for faces, word-pairs and designs.

Conclusion: Recall-based fMRI paradigms indicate hippocampal plasticity in MTLE-HS, maximal for word-pair associate recall tasks.

Keywords: Delayed recall; Encoding; Epilepsy; Event-related design; Hippocampal reserve; Hippocampal sclerosis; Laterality index; Memory fMRI.

Publication types

  • Observational Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Association Learning
  • Epilepsy, Temporal Lobe / complications*
  • Epilepsy, Temporal Lobe / etiology
  • Epilepsy, Temporal Lobe / pathology*
  • Female
  • Hippocampus / diagnostic imaging
  • Hippocampus / pathology*
  • Humans
  • Image Processing, Computer-Assisted
  • Magnetic Resonance Imaging*
  • Male
  • Memory Disorders / diagnostic imaging*
  • Memory Disorders / etiology*
  • Mental Recall / physiology*
  • Neuropsychological Tests
  • Oxygen / blood
  • Photic Stimulation
  • Pilot Projects
  • Sclerosis / complications
  • Young Adult

Substances

  • Oxygen